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I am delighted to introduce the first EDHEC Climate + Finance special issue of the 
EDHEC Research Insights supplement to Investment & Pensions Europe. 

Since 2001, EDHEC Business School has been implementing an ambitious 
research policy combining academic excellence with practical relevance. This includes 
furthering scientific research in those areas where the school excels in terms of 
expertise and research results, and highlighting practical implications and applications 
to decision makers. This is complemented by business ventures, backed by the EDHEC 
Foundation, which are designed to accelerate the transfer of innovation to the industry.

This policy was spearheaded by risk and investment management research centre 
EDHEC-Risk Institute, which has now become EDHEC-Risk Climate Impact Institute. 
Its transition demonstrates the school’s commitment to helping organisations integrate 
sustainability risk and impact considerations.

Fittingly, four of the six contributions in this special issue were penned by EDHEC-Risk 
Climate researchers. The others were prepared by researchers from EDHECinfra, the 
research institute at the origin of the leading provider of index data, benchmarks and 
analytics in the unlisted infrastructure universe, and Scientific Portfolio, an early-stage 
technology initiative designed to help institutional investors integrate financial and 
non-financial information to analyse and design equity portfolios in a cost-efficient manner.

This issue opens with a contribution by EDHEC-Risk Climate Scientific Director 
Professor Riccardo Rebonato. It describes how the oft-criticised models linking the 
economy and the planet’s climate can be upgraded to include the latest advances of 
science. Professor Rebonato presents original simulation work showing that targeting 
1.5–2°C of warming can be justified as an optimal goal from an economic standpoint. 
He also shows that while the emissions abatement pace implied by such an objective is 
technically possible, it is improbable and should not be considered a ‘central’ scenario.

In the second article, the core team of Scientific Portfolio describe how they 
developed a factor that captures both the sectoral and intra-sectoral dimensions of 
transition risks. Head of Research Benoit Vaucher, PhD, CFA, ESG Director Vincent 
Bouchet, PhD, and Director Benjamin Herzog find that, while their factor is forward 
looking, it efficiently identifies funds considered as ‘green’ or ‘brown’. The authors also 
discuss how their approach enables the management of transition risks to be seam-
lessly integrated into portfolio construction.

In the third article EDHEC-Risk Climate Affiliate Member Professor Noël Amenc 
and EDHECinfra Director Frédéric Blanc-Brude, PhD, analyse the outperformance of 
low-carbon energy infrastructure investments over the past decade and find that it is 
largely explained by excess demand. After controlling for risk factors, they find no 
persistent ‘green’ risk factor, but instead a ‘green price premium’ that investors have 
been willing to pay. 

In the fourth article, EDHEC-Risk Climate Research Engineer Emanuele Chini uses 
advanced econometric methods to explore the relationship between stock returns and 
proxies for environmental footprint. He identifies a latent environmental factor with 
significant explanatory power in the energy sector and finds that emissions-related 
metrics are the main drivers of stocks’ exposure to this factor.

In the penultimate article of this special issue, EDHEC-Risk Climate Research 
Director Professor Dominic O’Kane and Senior Research Engineer Jean-Michel Maeso, 
PhD, use a variety of language models to construct climate news indices. The authors find 
that returns of high carbon intensity portfolios show a strongly statistically significant 
negative association with a climate-news index constructed from the aggregation of 
sources. This research benefits from the support of Amundi.

Corporates and investors are increasingly expected, if not legally required, to assess 
their climate-related financial risks using climate scenarios. Our closing article is by 
EDHEC-Risk Climate Research Programme Director and climate-stress testing pioneer 
Professor Irene Monasterolo. Professor Monasterolo introduces and discusses the 
characteristics of these climate scenarios, their operationalisation for climate-financial 
risk assessment, their current limitations and their potential for further development.

We wish you an enjoyable read and extend our warmest thanks to IPE for their 
collaboration on the supplement.

Emmanuel Métais, PhD, Dean, EDHEC Business School
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This paper explains what integrated 
assessment models (IAMs) are, 
why they are useful to analyse 
the impact of climate change, and 
how the criticisms levelled at the 
early versions have largely been 
addressed.

With the new-generation IAMs, the 
Paris Agreement 1.5–2°C target 
emerges as an optimal, rather than 
‘aspirational’, goal.

The paper also shows that following 
this optimal path requires an 
unprecedented change in emission 
trajectory. As a consequence, 
there is ample scope for negative 
surprises, which may currently be 
only imperfectly reflected in asset 
prices.

I
ntegrated assessment models (IAMs) 
are ambitious descriptions of the whole 
economy and of the Earth’s climate, 
designed to give policy recommenda-
tions about the most cost-efficient 

course of action to counter the effects of 
climate change. After enjoying an initial 
popularity, they have been severely 
criticised for being of little use – and 
perhaps even dangerous. The criticisms 
levelled at the early incarnations of IAMs, 
and in particular at the (first version of ) 
the dynamic integrated climate-economy 
(DICE) model of Nordhaus (1993), were 
justified, as their ‘optimal’ policy sugges-
tions – such as recommending an 
‘optimal’ temperature increase by the end 
of the century of 3°C or more – seemed to 
fly in the face of common sense. 

I intend to argue that, if made fit for 
purpose, IAMs can provide extremely 
useful policy guidance. In particular, their 
modern versions show that the target of 

1.5–2°C warming by the end of the century 
can be justified as an optimal, not just an 
‘aspirational’, goal. They also show how 
ambitious the optimal policy would be: 
abatement would have to accelerate at an 
unprecedented rate and buck all existing 
trends. By highlighting how radical our 
commitment to abatement (and removal) 
would have to be for these optimal 
temperature targets to be met, IAMs draw 
our attention to the essential distinction 
between what is theoretically and what is 
practically (read, politically) possible. 

These findings are of relevance not only 
to policymakers, but also to strategic 
investors. If markets currently price in a 
‘soft climate landing’ in which a close-to-
optimal climate policy will somehow be 
followed, it is important to understand how 
aggressive (and hence unlikely to be 
implemented) such an optimal policy 
actually is. And it is just as important to 
understand what the repercussions on 
asset prices may be if we do not engage in 
this unprecedented reduction in emissions. 

Fortune and misfortune of IAMs 
The DICE model has enjoyed very different 
fortunes on either side of the Atlantic: in 
the US, it has been used (together with two 
other models) by the Environmental 
Protection Agency to inform government 
policy. In Europe, policymakers have 
turned their backs on IAMs in general, and 
on the DICE model in particular, and have 
instead endorsed the Paris Agreement 
1.5–2°C target. In the European approach, 
optimisation tools are still used, but only to 
minimise the cost of attaining the ‘exog-
enous’ 1.5–2°C target. The reason for 
these different responses to the DICE 
model is probably to be found in the very 
gradual pace of emission abatement and 
the low social cost of carbon (the optimal 
‘carbon tax’) it recommends. These policy 
recommendations have chimed better with 
the US political environment of recent 

decades (which has, on average, been less 
than enthusiastic in its pursuit of climate 
action), but have jarred with the more 
‘progressive’ European institutions.

The situation is far from ideal, because 
economic and climate-physics models 
have become political tools rather than 
conceptual aids to make sense of what is 
already an extremely complex problem. In 
the US, a frankly outdated version of the 
DICE model is still used, despite the fact 
that (or perhaps because) it recommends 
very gradual abatement efforts and a low 
social cost of carbon. In Europe, the 
1.5–2°C target has acquired totemic 
value, despite the fact that climate science 
cannot pinpoint with the degree of 
accuracy implied by the Paris target a 
‘safe’ or ‘dangerous’ temperature range. 
Indeed, the best estimates of the climate 
sensitivity (which is a key quantity in the 
calibration of climate models) span as 
wide a range as shown in figure 1, which 
displays the fit by Roe and Baker (2007)1 
to the best climate sensitivity values 
reported in the literature.2 As the figure 
shows, there is a 10% chance that the true 
sensitivity may be below 1.7 or above 4.7. 
As the director of the Harvard University 
Center for the Environment, Professor 
Daniel Schrag, points out, as far as we 
currently know there is no cliff either side 
of the 1.5–2°C interval. In his words, 
“1.5°C is not safe and 2.2°C is not the end 
of the world”.3 

All of this may well be true, and an 
uncompromising rationalist may conclude 

What integrated 
assessment models can 

tell us about asset prices
Riccardo Rebonato, Scientific Director, EDHEC-Risk Climate Impact 

Institute; Professor of Finance, EDHEC Business School

1 For a good discussion, see Pindyck (2022).
2 Climate sensitivity is the rise in global temperature in 
response to a doubling of CO2 concentration with respect 
to pre-industrial levels. It is a key input to all climate 
models.
3  Professor Daniel Schrag quoted in The Economist, 
November 2022. Available at:  https://www.economist.
com/interactive/briefing/2022/11/05/the-world-is-
going-to-miss-the-totemic-1-5c-climate-target 

https://www.economist.com/interactive/briefing/2022/11/05/the-world-is-going-to-miss-the-totemic-1-5-climate-target
https://www.economist.com/interactive/briefing/2022/11/05/the-world-is-going-to-miss-the-totemic-1-5-climate-target
https://www.economist.com/interactive/briefing/2022/11/05/the-world-is-going-to-miss-the-totemic-1-5-climate-target
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that obsessing on this round-number 
target as if it were the be-all-and-end-all 
of climate control does not make a lot of 
sense. The fact remains, however, that the 
1.5–2°C target has become a universally 
recognised policy reference point, and 
that it has become part of the political 
discourse. This has value in itself. Clear 
and simple targets, especially if express-
ible in numbers (and even more espe-
cially, in round numbers) do serve a useful 
role.

This raises questions. Can the ‘totemic’ 
(read, aspirational) 1.5–2°C target be 
reconciled with the recommendations of 
state-of-the-art IAMs? Can policymakers 
on both sides of the Atlantic re-engage 
with DICE-like models, or are we doomed 
to have differing American and European 
versions of climate truth?

How IAMs work
To answer these questions, we must 
understand why the original DICE model 
produced such a gradual abatement 
schedule. As in all IAMs, there are in 
DICE two connected blocks. This first 
makes up a module that describes the 
world economy following the well-trodden 
path of dynamic stochastic general 
equilibrium models: capital, labour and 
the total factor of production combine via 
a Cobb-Douglas function to give gross 
economic output. To produce this output, 
greenhouse gases are emitted – the more 
so, the less the economy is ‘decarbonised’. 
This is where the economic module feeds 
into the physics module: the industrial 
emissions increase the concentration of 
CO2 in the atmosphere, and this causes an 
increase in global temperature. The 
higher the temperature, the greater the 

damage inflicted on the economic output. 
The standard capital allocation choice 
(how much of the output should be saved 
rather than consumed) is made more 
complex than usual by the existence of 
this feedback loop from production to 
temperature and to reduction in produc-
tion. It is because of this feedback loop 
that it is rational to divert some of the 
productive resources to abatement 
initiatives. The key question is: how 
much?  

To answer this question, IAMs 
associate a utility with consumption, all 
the way from now to centuries in the 
future. The goal of the policymaker is 
then to fine-tune ‘control variables’ (how 
much to save and how much to abate) so 
as to maximise some function of the 
discounted values of all these utilities.

Every single step of this procedure is 
fraught with uncertainties. However, 
some particularly deep trenches have 
been dug in the climate wars along a 
handful of key modelling points. It pays to 
understand why the debate is so heated, 
and what these bones of contention are.

The first observation is that the bulk of 
climate damage will be suffered by 
generations in the future – and, some-
times, in the very distant future. The 
problem therefore arises of how to 
‘present value’ the utility enjoyed by 
future generations. Some economists (and 
many philosophers) have argued that we 
should accord to ‘future people’ exactly 
the same importance as we do to our 
contemporaries.4 In the context of climate 
change, Stern (2006a, 2006b) is the 
best-known representative in this camp, 
but the ‘altruistic’ tradition goes all the 
way back to Ramsey (1928). Most 

economists (Nobel laureate Nordhaus 
among them) favour a ‘low’ but non-zero 
discount rate. The difference between 
Stern’s 0.1% discount rate and Nordhaus’s 
1.5% may seem small but, given the 
extremely long horizons (centuries) of the 
climate change problem, such small 
differences matter a lot. From Nordhaus’s 
perspective, the welfare of our great-
great-grandchildren has little bearing on 
the climate decision of a current policy-
maker; using Stern’s choice, future 
generations remain almost exactly as 
important as the present one. Because of 
this telescoping effect, the Nordhaus 
optimal solution envisages ‘optimal’ 
temperatures (and damages) for the end 
of the century and beyond well above the 
values recommended by Stern-
approaches. Stern’s best abatement action 
is fast and on a large scale; Nordhaus’s is 
gradual and limited in its initial scope. 

Since economists and philosophers 
have been debating for decades (if not for 
centuries) the merits and blemishes of 
unlimited altruism, there is unfortunately 
little hope that this disagreement will be 
resolved any time soon. This is one of the 
two main reason why IAMs have been 
distrusted by policymakers.

The other main determinant of the 
optimal abatement policy about which 
there is huge disagreement is the so-called 
‘damage function’.5 For a given level of 
CO2 concentration, this is the function 
that transforms the temperature increases 
predicted by the climate models into 
damages to economic output. As figure 1 
shows, climate models may suffer from a 
high degree of uncertainty. However, their 
predictions have pin-point accuracy 
compared with what we can extrapolate 
about economic damages in response to 
temperature changes never experienced 
by human civilisation. The problem is that 
we have no scientific or economic theory 
to estimate this function, and, by and 
large, we have to use rather crude 
extrapolations. And extrapolations they 
must be because (fortunately) we have, so 
far, only observed damages for increases 
in global temperature of little more than 
1°C, while we would like to know what 
might happen due to an increase of, say, 

4  See, eg, Sidgwick (1907), Harrod (1948), Solow (1974), 
Dasgupta (2020).
5 The rate of growth of the economy also has a very large 
effect on the optimal solution. There is, however, much 
less disagreement among economists about this quantity. 
If we are sure that our grandchildren will be much richer 
than we are, engaging in large and costly abatement 
today would be akin to imposing a tax on the poor (us) 
to benefit the rich (our grandchildren). How much we 
dislike uneven consumption plays an important role in 
determining how important this consideration is. 

Source: Author's calculations using references in Pindyk (2022)

1. A fit to the dispersion of the climate sensitivity, a key input for 
all climate models: probability density of climate sensitivity
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3°C or 6°C. A variety of methods have 
been used,6 but there are huge variations 
not only across methods, but also within 
each method. So, for instance, for a 
probably very severe degree of warming of 
5°C, the estimated impact on output 
ranges from positive 5% to negative 16%. 
Climate scientists have criticised econo-
mists for projecting damage values that 
are too low – and, indeed, in figure 2, the 
red dots obtained by elicitation (mainly 
from climate scientists) are below the 
green dots estimated by econometricians 
for all levels of warming. However, it is 
not a priori clear why climate physicists 
should be better placed to estimate 
economic damage than economists. 
Having said this, some economists have 
not done themselves any credibility 
favours by predicting that a 5°C warming 
would be greatly beneficial for the planet.7  
(Should a clarification be needed, 
Nordhaus is not one of these overoptimis-
tic economists.)

Now, the damage function used in the 
original DICE model belongs to the 
econometric class, and has been roundly 
criticised for being too tame. In particu-
lar, the ‘damage exponent’, ie, the 
quantity a3 in the equation that links 
temperature (T) to damages (Ω):

Ω = a2 Ta3

was estimated to be equal to 2, giving rise 
to a relatively mild quadratic dependence 
of damages on temperature.8  

As figure 2 shows, many different 
functional dependences could be esti-
mated depending on which method is 
used. When used as input to an IAM, each 
of these different and difficult-to-justify 
assumptions produces very different 
optimal abatement schedules and carbon 
tax. Understandably, this has given 
powerful ammunition to the critics of 
IAMs in general, and of the DICE model 
in particular.

Since neither of these two sources of 
uncertainty is likely to be resolved any 

time soon, does this sound the death knell 
for the use of DICE-like IAMs as ‘serious’ 
policy applications?  Are these models 
destined to produce nice academic papers, 
or, if used in earnest, to be hijacked for 
political purposes? This need not be the 
case, because a suitably enriched version 
of the DICE model can provide useful 
guidance in navigating the stormy waters 
of climate policy.

Making IAMs fit for purpose
Most of the lines of criticism that have 
been levelled against the DICE model 
often use the straw man of its early 
incarnation, the Nordhaus (1993) version. 
Huge modelling strides have been made in 
the intervening decades. Once the DICE 
model is suitably enhanced, both the 
fundamental critiques discussed above 
(about the lack of agreement regarding 
the correct discount rate and about the 
damage function) lose much of their bite. 
Given the strength and, apparently, 
‘existential’ nature of these objections, 
how can a perhaps better model that still 
rests on such shaky foundations be of 
much use? How can it escape the garbage 
in, garbage out curse? To explain how this 
modelling miracle is possible, we have to 
understand what is really wrong with the 
early IAMs.

The original DICE model described a 
world with no uncertainty: the rate of 
growth of the population and of the 
economy, the damage function, the future 
cost of abatement with yet to be discov-
ered technologies – everything was 
perfectly known to the policymaker. It 
was not difficult to add uncertainty and 

stochasticity to this or that model 
variable. However, when this was done, 
the first results were surprisingly similar 
to the optimal policies obtained with the 
deterministic version of DICE. Did the 
huge degree of uncertainty really not 
matter?

The problem was that, for computa-
tional reasons, the early IAMs invariably 
used what are described as constant 
relative risk aversion, time-separable 
utility functions. Functions, that is, that 
have two features: the first is that a poor 
and a rich agent will suffer the same pain 
(loss of utility) for the same percentage 
(not absolute) loss of wealth; the second is 
that today’s total welfare can be simply 
computed as the sum of the discounted 
utilities experienced at different times.

Neither of these features in isolation 
seems particularly unpalatable (the first 
may not be empirically correct, but is 
certainly a big improvement over assum-
ing absolute risk aversion). However, put 
together, they produce a toxic result. The 
problem is that these utility functions 
force dislike for static risk (for taking a 
gamble today) and dislike for uneven 
consumption (which have nothing to do 
with each other, as the latter can arise 
even in a deterministic setting) to be 
identical. This is a big problem: if we say 
that we are very risk averse, we are forced 
to say that we strongly dislike uneven 
consumption. Couple this feature with the 
(mainstream) assumption that we shall be 
much richer in the future, and all of a 
sudden investing a lot in climate abate-
ment becomes akin to imposing a tax on 
the poor (us) to benefit the rich (our 

The climate damage (welfare equivalent income change as % of global GDP), as estimated by the enumeration, 
elicitation, econometric and CGE methods. The yellow curve shows an equal-weight polynomial fit to all the 
estimates. Source: Tol (2022).

2. The effect of temperature on global annual output

6   Kainth (2022) distinguishes the enumeration, 
elicitation, econometric and computational general 
equilibrium approach, and discusses the strengths (few) 
and weaknesses (many) of each.
7 Among the ‘optimistic’ results, the work by UCSB 
Professor Olivier Deschenes (2007, 2011) should be 
mentioned. One of the arguments of those economists 
who predict a net benefit from global warming is that 
the increase of CO2 in the atmosphere will enhance the 
growth of agricultural foodstuffs (the so-called ‘CO2 
fertilisation effect’).
8 A damage exponent of approximately 2°C (1.98) was 
independently estimated by Rudik (2020). In theory, 
there is a linear term in a1 but, when a quadratic term is 
present, this coefficient is usually estimated to be zero.  
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great-grandchildren). The more we dislike 
uneven consumption, the more this 
‘regressive taxation’ seems unacceptable, 
and the more we want to push the 
greatest burden of the abatement effort on 
to future generations. This leads inescap-
ably to a paradoxical result for early 
DICE-like models: even in the presence of 
huge uncertainty (say, about damages and 
economic growth), a high aversion to static 
risk causes the optimal abatement policy to 
be one of procrastination, not of decisive 
action. This is because, with the original 
modelling framework, the high aversion to 
static risk implies an equally high dislike 
for uneven consumption, and the two 
effects at best cancel each other out. At 
worst, they cause the optimal abatement 
policy to be even slower (and the carbon 
tax lower).

Is there really no way out of the 
impasse? There certainly is: if we use 
so-called recursive utility functions (eg, of 
the Epstein and Zinn [1989] class), we can 
assign independently a coefficient of 
aversion to static risk, and a coefficient of 
aversion to uneven consumption. With a 
realistically strong dislike for static risk,9  
the great uncertainty about climate 
outcome can now have the expected effect 
of making the abatement strategy 
prompter and more decisive, without the 
dislike for uneven consumption (that can 
be parametrised independently) working 
in the opposite direction. 

Seen in this light, the extremely high 
uncertainty about climate damages (and, 
to a lesser extent, about the physics of the 
problem) no longer render IAMs useless: 
knowing that we do not know, and 
knowing how ignorant we are, immediately 
makes the optimal policy more prudent, 
the abatement effort more urgent, and the 
carbon tax higher. 

Why did the early IAMs make use of 
the time-separable power utility func-
tions? Why weren’t aversion to static risk 
and to uneven consumption decoupled 
from the start? Because recursive utility 
functions, which allow the independent 
parameterisation of these different 

The abatement function, μ (left panel) and the temperature anomaly (right panel) obtained by the Stern model, 
by the original DICE model and by the modern version of the DICE model described in the text.

Historical CO2 emissions (left portion of the graph 
up to 2022) and projected emissions along the future 
optimal path (right portion of the graph after 2022).

3. The abatement fraction and the temperature anomaly

4. Historical and projected 
emissions

9 I say ‘realistically’ because all estimates of the 
coefficient of relative risk aversion from observed asset 
prices point to values much higher than the 1.45 posited 
in the DICE model. In their seminal paper, Bansal and 
Yaron (2004) estimate a coefficient of aversion to static 
risk above 10.
10  Research carried out at ERCII (Rebonato, Kainth, 
Melin and O’Kane [2023]) extends this analysis to 
the case when negative emission technologies are 
available alongside traditional abatement tools. A 
detailed discussion would take too long a detour, but 
the qualitative results are not changed. If anything, the 
optimal temperature path is a bit lower than shown in 
the second panel of figure 3.  
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‘preferences’, are indeed much more 
palatable (every economist agrees on this), 
but come at a high (and, until recently, 
exorbitant) computational cost. Luckily, 
more powerful computers, but, above all, 
smart computational techniques – includ-
ing some spearheaded by EDHEC-Risk 
Climate Impact Institute – have turned a 
near-impossible task into a reasonably 
manageable one.  

What about the ‘philosophical’ debate 
about how altruistic we should be towards 
future generations – about, that is, the 
rate of utility discounting? No degree of 
computational wizardry can solve what is 
in essence an ethical problem. However, 
when the aversion to static risk and to 
uneven consumption are disentangled, 
and a realistic degree of uncertainty is 
injected into the problem, the optimal 
abatement schedule produced by the new 
and improved DICE model with the same 
degree of impatience posited by the original 
DICE model is already so ambitious and 
aggressive (and the carbon tax so high), 
that it is already at the limit of what is 
practically and politically achievable. In 
practical terms, once we disentangle 
aversion to static risk and uneven 
consumption with recursive utility 
functions, we no longer need to be 
infinitely (and, arguably, unrealistically) 
altruistic to obtain an optimal solution 
close to Stern’s extremely aggressive 
recommendations. See in this respect the 
left panel of figure 3, which also shows in 
the right panel the similarity of the 
optimal temperature profile recom-
mended by the Stern and ‘modern DICE’ 
approach, and the much higher optimal 
temperature obtained by the original 
DICE model.

It is also important to stress that the 
modern DICE optimal temperature 
remains within the Paris accord 1.5–2°C 
target by the end of the century. It is in 

this sense that staying within the target 
can be justified as an optimal policy, and 
not just an ‘aspiration’. For the reasons 
discussed in the opening paragraphs, the 
importance of this result should not be 
underestimated.10   

From optimality to implementation
Knowing what would be optimal to do is 
clearly important, and it is good to know 
that an abatement schedule that keeps the 
temperature between 1.5°C and 2°C by 
the end of the century is, in principle, 
technologically achievable, especially if 
carbon removal is allowed (see in this 
respect the discussion in footnote 10). 
The magnitude of the task, however, 
should not be underestimated. Figure 4 
shows the historical CO2 emissions from 
1850 to date in the left part of the graph, 
and, in its right portion, the optimal 
emission path obtained by the modern 
DICE approach – a path that, let’s 
remember, just keeps us inside the Paris 
Agreement target.  

Clearly, an unprecedented change in 
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global emission policy must take place, 
and the required change of abatement 
pace is, literally, breathtaking. Has 
anything similar so far been observed?11 
Yes and no. Figure 5 (left panel) shows 
per capita CO2 emissions in France since 
the start of the nineteenth century. If we 
ignore the dips associated with the two 
world wars (this is not how we want to 
curb emissions), we note a remarkably 
sharp fall in emissions starting in the late 
1970s.  

The drop is clearly attributable to the 
peculiarly French choice of adopting 
nuclear energy as the dominant energy 
source: notice (right panel), the parallel 
drop in oil consumption, brusquely 
reversing what had been a steady increase 
until the late 1970s.

The most pronounced falls in CO2 
emissions per capita to date have occurred 
in the Western world and, as far as we 
have been able to ascertain, in no major 
country has the drop been faster than in 
France.12 Since few countries share 
France’s enthusiasm for nuclear energy, it 
is difficult to see this pace of abatement 
repeated elsewhere.13 In Germany, for 
instance, despite the enthusiastic embrace 
of sources of renewable energy, the pace 
of abatement has been 50% slower than in 
France. In any case, even looking at how 
quickly the ‘best in class’ have managed to 
abate can be seriously misleading. As 
figure 6 shows, all European countries 
have ‘exported’ a significant part of their 
emissions (by having parts of the goods 
they consume manufactured elsewhere 
– often in parts of the world with lower 
emission standards). When imported 
emissions are taken into account, China 
has grown emissions some 10% less than 
its headline figure, but, depending on the 
country, European emission figures 
should be increased by up to 68% (for 
Sweden).

The realised declines in emissions are 
shown in figure 7 for a handful of 
countries, each representative of different 
approaches to apparently successful 
abatement: the right-hand panel shows 
the CO2 emissions normalised by their 
level at the beginning of the 20th century; 
the left-hand panel gives an idea how 
quickly the economy has decarbonised, by 
plotting the ratio of the emissions in the 
year shown on the x axis to the maximum 

level of emissions (whenever these occur). 
We note first that for all countries the 
maximum emissions are reached around 
the mid to late 1970s. We have discussed 
the case of France and Germany. Sweden 

seems to have achieved a relatively 
impressive feat of emission reduction. 
However, for Sweden, imported emissions 
have grown steadily from 48.6% in 1990 to 
68.5% in 2020. When this figure is factored 

The graphs show per capita CO2 emissions (tonnes) from 1800 to date (left panel) and the percentage share of 
energy consumption by source from 1965 to date (right panel). Source: Our World in Data.

Expressed as emissions exported or imported as percentage of domestic production emissions. Positive values 
(red) represent net importers. Negative values (blue) net exporters.
Source: Our World in Data using data from the Global Carbon Project.

5. CO2 emissions in France

6. CO2 emissions embedded in trade, 2020

Oil Coal Hydro
Wind Solar Other renewables

Gas Nuclear

0

2

4

6

8

10

12

20001950190018501802
0

10

20

30

40

50

60

70

2020201020001990198019701965

No data
-200%

-100%
-50%

-20%
-10% 10%

20%
50%

100%0%

11  The analysis that follows is based on data made 
available by the excellent resource Our World in Data.
12 This is after adjusting for ‘exported emissions’ – see 
the discussion to follow. 
13 Higher safety standards and a loss of engineering 
expertise due to reduced building activities in recent 
decades may also limit the speed at which one can 
develop the share of nuclear power in the next decade.

The right-hand panel shows CO2 emissions normalised by their level at the beginning of the 20th century; the 
left-hand panel gives an idea of how quickly the economy has decarbonised, by plotting the ratio of the emission 
in the year shown on the x axis to the maximum level of emissions (whenever these occur).
Source: Author’s calculations using data from Our World in Data.
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The pace of abatement required to keep global temperatures from rising above 1.5°C (left panel) or 2°C (right 
panel). The black line represents the abatement pace required if the required abatement policy is started 
immediately. Every year of delay (curves to the right of the black line) makes the abatement pattern steeper. 
Source: Ritchie, Roser and Rosado (2020).

8. The pace of abatement required
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14  Source: McKinsey Report, The Energy Transition: 
A Region-by-Region Agenda for Near-Term Action, 
December 2022. See also Smil (2021).
15  See, in this respect, the EDHEC-Risk Climate Impact 
Institute paper by Rebonato, Kainth, Melin and O’Kane 
(2023). 

back in, Swedish emission decreases from 
the peak are much less impressive. The 
UK also seems to have achieved a very 
significant reduction in emissions from 
the peak, but the left-hand panel shows a 
very atypical pattern for Western coun-
tries because in the 1960s and1970s the 
increase in emissions was much more 
muted. And, in any case, the ‘hidden’ 
emissions coming from trade have steadily 
grown for the UK from 11% in 1990 to 42% 
in 2020 (the same figures are 13% to 20% 
for Germany, with the initial low figures 
distorted by German reunification). 

This is what the best in class have 
managed to achieve in terms of the pace 
of decarbonisation. In the light of this, 
how difficult is it to meet the Paris 
Agreement temperature ambitions? 
Figure 8, which displays the pace of 
abatement required to remain within 
1.5°C (left panel) and 2°C (right panel) 
suggests an answer. Without negative 
emissions, the more ambitious goal is 
essentially unattainable. The 2°C target 
requires sustained reductions in (trade-
adjusted) emissions, the like of which 
have not been seen anywhere in the world 
– and, when it has been approximated, the 
feat has been achieved only thanks to a 
massive switch to nuclear energy. To put 
things in perspective, the unique, nuclear 
energy-led fall in emissions experienced 
in France has seen a reduction of 53% in 
28 years; the required global fall in 
emissions to remain within the less 
ambitious target of 2°C by the end of the 
century requires approximately the same 
percentage reduction in 22 years – and 
this is before correcting for trade-embed-
ded emissions.

Of great concern is also the fact that, 
although the production of energy from 
renewables has doubled in the past 
decade, global emissions have also 
increased. This is mainly due to emission-
intensive sources (such as the production 
of cement or steel), for which there are 
currently very few large-scale non-fossil-
fuel alternatives.14 The key problem is that 
the appetite for cement and steel seems 
insatiable: Smil (2022) reports that in the 
two pre-COVID years China alone 
produced roughly as much cement (4.4bn 
tonnes) as the US during the whole of the 
20th century. Unfortunately currently 
“there are no large-scale, proven ways of 
producing these four material pillars 

[cement, steel, plastic and ammonia] of 
modern civilisation with electric energy 
alone (green or otherwise)” (Rebonato 
[2023]).

What does this mean for investors?
This paper has described in very broad 
terms what the latest-generation IAMs 
tell us about the optimal course of climate 
action, and how achievable this target may 
be. A lot more could be said on the topic 
– the most glaring omission being the 
important role that negative emissions 
must play in any realistic 1.5–2°C 
strategy.15 A few key messages stand out: 
l When updated to reflect the latest 
advances in physics and economics 
modelling, IAMs can give very useful 
policy advice; 
l The recommendations they provide 
point to a much faster and steeper 
abatement policy than the original DICE 
model indicated – a policy consistent with 
the 1.5–2°C Paris target;
l This fast abatement pace is technically 
possible, but (apart from what has been 
observed during world wars) it would be 
unprecedented: technologically not 
impossible, but by no means a ‘central 
scenario’.

What does this mean for investors? 
Which abatement scenarios are current 
asset prices reflecting? Are substantial 
price adjustments to be expected?

Answering these questions is far from 
easy, because it has proved difficult to 
establish to what extent asset prices have 
moved so far in response to climate news. 
The very fact that detecting the impact of 
climate risk on prices has proven so 
difficult, however, points to the fact that 
the price sensitivity so far cannot have 
been very pronounced. Let us assume that 
this is true – that asset prices have to date 
changed relatively little because of our 
climate predicament. This could mean 
three things: 

l That the market believes that, whatever 
the climate outcome, the impact on asset 
prices will be very limited; 
l That the market believes that ‘this time 
is different’ and all the major emitters will 
stick to their pledges, and actually 
increase them, and the temperature 
increases will be contained (possibly 
within the Paris Agreement target);
l That the market is ‘asleep at the wheel’.

The first option (the irrelevance of a 
poorly controlled climate outcome for 
asset prices) is difficult to believe. Perhaps 
it is true that the economic (certainly not 
the human!) cost, as such cost is currently 
measured, will be limited, but clearly, we 
cannot be sure of this. See Pindyck (2022) 
in this respect. And, in any case, as we 
have seen, just our uncertainty about the 
economic effects should affect asset 
prices. As we hear after every election 
with an unclear outcome, ‘Markets hate 
uncertainty’. If the first explanation is 
true, this time they seem, if not to love it, 
at least to ignore it.

The second possibility requires a very 
high degree of confidence in an unprec-
edented change in actual climate action 
(without cosmetic adjustments behind 
the smoke screens of exported emis-
sions). As Pyndick (2022) points out, 
every major climate pledge to date has 
been broken or ‘massaged to hit the 
numbers’. And even if the current 
pledged reductions were enacted, they 
would still fall somewhat short of the 
2°C (let alone a 1.5°C) target.  

The third possibility (that the market is 
wearing climate blinkers) is in my view 
the most likely, but clearly flies in the face 
of any notion of market efficiency. If 
markets were to adjust their expectations 
of the impact of climate change on 
cashflows and profitability in a sudden 
and disorderly fashion, this could create 
sudden asset repricing and heightened 
volatility.  



SPRING 2023

8 EDHEC Research Insights

We propose a transition factor that captures both the sectoral and intra-
sectoral dimension of the transition to a low-carbon economy by relying on the 
climate-policy relevant sector classification and on GHG emissions intensity. 

We present an approach that enables us to disentangle the risk attributed to 
financial risk from those stemming from climate transition risks. 

Over the recent period (2017–20), this risk associated with the climate 
transition factor already represents a significant part of the active risk of  
some funds. 

Look up!
A market measure of the long-term 
transition risks in equity portfolios

Vincent Bouchet, ESG Director, Scientific Portfolio (EDHEC 
venture); Benoit Vaucher, Head of Research, Scientific 

Portfolio; Benjamin Herzog, Director, Scientific Portfolio

It is difficult at the moment to state 
with confidence which of the three 
possibilities is the correct one. All of this, 
however, points clearly to two topics for 
further investigation: first, measuring 
what the impact on asset prices of 
different climate outcomes can be (see in 
this respect preliminary work by Reb-
onato, Kainth and Melin [2023]); and, 
second, assessing to what extent this 
information is reflected in prices. Both 
these pieces of information are necessary 
to establish a connection between 
economic modelling, actual climate policy, 
and the impact of this on asset prices. 
Research in both these directions is under 
way at EDHEC-Risk Climate Impact 
Institute.  
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use of a CT factor in a risk model. 
Investors have started considering 
transition risks relatively recently: 2015 
was a pivotal year with the Paris Agree-
ment and the warning by Bank of England 
governor Mark Carney (Carney [2015]). 
Because the traditional tests to validate 
the relevance of a factor rely on long 
timeframes, CT factors usually do not 
pass these tests and are therefore not 
qualified as ‘proper’ risk factors (Amenc, 
Esakia and Goltz [2021]; Görgen et al 
[2020]). We propose a different approach, 
one that focuses on the practical manage-
ment of transition risks by disentangling 
the links between a portfolio’s exposure to 
the CT factor and the traditional ones.

Our goal is to give priority to the 
long-term robustness and to avoid the 
‘Don’t Look Up’ syndrome. In this movie, 
the discovery of a world-killing comet 
serves as a metaphor for the (lack of ) 
reaction of our society to climate change. 
What if this comet was not going to 
destroy the world, but just a single city? 
How would you design a ‘comet’ factor? 
As in the first part of the movie, while the 
comet’s trajectory is known only to 
scientists, the effect on market prices will 
be negligible. However, this effect will 
increase dramatically once the public 
becomes aware of the comet’s trajectory 
and believes it to be true. The risk is 
therefore real, but its impact on prices is 
not observable for a long time; testing the 
validity of such a comet factor on 
historical prices is not relevant. In this 
case, the factor validation should focus on 
the inclusion of the most robust informa-
tion about the comet: where it will crash. 
Therefore, we believe that the use of 
industrial sectors in the construction of a 
CT factor is crucial.

From a fundamental to a market 
measure of transition risks
Since 2015, several articles have investi-
gated how transition risks are already 
reflected in asset prices (Giese, Nagy and 
Rauis [2021]). Early studies focused on 
firms’ fundamental data as indicators of 
transition risks, but poor data quality as 
well as short analysis timeframes have 
limited their conclusiveness. For example, 
Bolton and Kacperczyk (2021) analyse 
3,421 US firms over the period 2015–17. 
They show that firms with higher GHG 
emissions and changes in GHG emissions 
are valued at a discount, suggesting that 
investors demand compensation for their 
exposure to transition risks (consistent 
with Görgen et al [2020]). Engle et al 
(2020) also note that stocks of firms with 
lower E-scores – which the authors argue 
capture higher exposure to transition 
risks – generate lower returns during 

periods with negative news about the 
future path of climate change, suggesting 
that investors reassess the compensation 
required to hold ‘brown’ stocks when new 
information related to climate change is 
released. 

The limitations of the fundamental 
measures of transition risks encouraged 
academics to turn to the price signal from 
companies with similar transition risk 
profiles (market measure). The main 
advantage of prices over characteristics is 
that they integrate information that has 
been processed by market participants. 
Whereas scores and characteristics are 
based on sub-optimal data and ad hoc 
models, prices reflect the opinion of 
market participants who process informa-
tion from a wide variety of sources. Prices 
thus have a richer informational content 
that is, moreover, updated in real time.

However, studies based on a market 
measure of transition risks are also 
inconclusive with respect to the existence 
of ‘green’ or ‘brown’ premiums. For 
example, In, Park and Monk (2017) build 
a carbon efficient-minus-inefficient (EMI) 
portfolio based on GHG emissions 
intensity within each of the 11 GICS 
sectors. They find positive alphas for the 
EMI portfolio that cannot be explained by 
the Fama-French five factor model 
(between 2010 and 2015, alpha amounts 
to 3.5–5.4% for EMI on the US market). 
Gurvich and Creamer (2022) find similar 
results on a broader sample (MSCI 
ACWI). On the other hand, the existence 
of this ‘green’ premium is disputed by 
Alessi et al (2021) and Amenc, Esakia and 
Goltz (2021) who find that the ‘green’ 
premium disappears entirely when 
accounting for estimation error. These 
results are consistent with Görgen et al 
(2020), who do not find a significant 
contribution of a CT factor. 

Just like Roncalli et al (2021), our 
approach is less concerned with the 
existence of a premium than the impact of 
the CT factor on risk. A price-based 
approach is therefore the most appropri-
ate, as risk estimates based on prices allow 
a direct comparison with traditional 
factors. 

A sector-based climate transition 
factor
A CT factor is meant to capture the 
exposure of a portfolio to the energy 
transition by constructing a signal that is 
positively correlated to companies that 
might suffer from an abrupt transition, 
and negatively correlated to companies 
that might benefit from this transition. 

The energy transition has both a 
sectoral and a company-specific dimen-
sion. First, the extent of the transforma-

1 For example, with the EU corporate sustainability 
reporting directive or taxonomy regulation.
2 For example, from the Task force on Climate-related 
Financial Disclosures (TCFD).

and market developments to avoid 
financial and reputational risks linked to 
drops in revenue, increases in costs or 
depreciation of (stranded) assets.

Transition risks are difficult to estimate 
using fundamental approaches. First, 
despite reinforced regulatory require-
ments1 and recommendations2, persistent 
gaps in climate-related data remain 
(NGFS [2022]). Secondly, the radical 
uncertainties associated with transition 
scenarios are difficult to incorporate into 
fundamental valuation models (Bolton et 
al [2020]). As a result, transition risk 
metrics display a significant degree of 
diversity (Bingler, Senni and Monnin 
[2021]).

Against this backdrop, academics have 
sought to measure transition risks directly 
from market prices. This approach relies 
on the ability of markets to process 
information in real time, which reduces 
the data and model barriers mentioned 
above. So far, the effort has focused on 
building climate transition (CT) factors. 
These factors are designed on the same 
principle as traditional factors (eg, size, 
value): they are portfolios constructed in 
such a way that their price changes are 
representative of the dynamics of the 
stocks affected by the transition risks.

The methodology we present aims to 
contribute to this literature on price-
based analysis of transition risks by 
addressing two main conceptual issues. 
The first is related to the design of a CT 
factor. While some papers rely solely on 
carbon intensity – ie, the greenhouse gas 
(GHG) emissions of a company divided by 
its revenues – others use up to 10 metrics 
to build their representative portfolio 
(Görgen et al [2020]). The type and 
number of metrics raise questions 
regarding their current availability, 
quality, and their relevance to assess 
long-term transition risks. Our approach 
departs from previous attempts at 
producing a CT factor based solely on 
individual company characteristics. 
Instead, we utilise what is likely to be the 
most robust information regarding a 
company’s exposure to transition risks: its 
industrial sector. We introduce a new CT 
factor that relies on i) the climate-policy 
relevant industrial sectors (CPRS) 
classification developed by Battiston et al 
(2017), and ii) the carbon intensity to 
differentiate companies within these 
CPRS sectors. 

The second issue of price-based 
analysis of transition risks is related to the 
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tions brought by the transition depends 
on the sectors, as the abatement cost of 
GHG emissions is directly related to the 
sector technologies (IPCC [2022]). Sector 
treatment in the construction of the CT 
factor is therefore a major concern. On 
the one hand, energy transition cannot be 
expected to wipe out entire branches of 
the economy, which argues in favour of a 
sector-neutral approach. On the other 
hand, some sectors will be affected more 
than others by the energy transition. In 
order to address both concerns, we design 
our factor as follows.

First, we narrow down the investment 
universe3 to climate-policy relevant 
sectors (CPRS) as defined by Battiston et 
al (2017). This classification identifies 
sectors whose primary economic activities 
“could be affected, either positively or 
negatively in a disorderly low-carbon 
transition [...] considering (i) the direct 
and indirect contribution to GHG 
emissions; (ii) their relevance for climate 
policy implementation [...] (iii) their role 
in the energy value chain” and has been 
used by several financial regulators to 
assess the exposure of financial institu-
tions to transition risks (ECB [2021]; 
EIOPA [2018]). This first source of 
information for the design of our CT 
factor is both robust (the sectoral 
affiliation is easily accessible) and 
forward-looking (the classification is 
established on the basis of disorderly 
transition scenarios).

The second step is to identify compa-
nies within these sectors that may benefit 
(or suffer) from a disorderly transition in 
the long run. Ideally, this step would be 
carried out on the basis of multiple 
company climate-related data. For 
example, Görgen et al (2020) compute a 
‘brown green score’ from 10 variables 
containing company-specific information 
related to value chain, adaptability and 
public perception. However, these data 
remain scarce and are not available for all 
sectors (NGFS [2022]). Moreover, 
Roncalli et al (2020) showed that the 
composite indicator built by Görgen et al 
(2020) is well captured by a factor based 
on the GHG-emissions intensity only. We 
therefore consider GHG emissions 
intensity as a robust and still relevant 
metric for identifying companies exposed 
to transition risks within the climate-
policy relevant sectors. 

This brings up the question of the 
scope of the emissions to be considered. 
The objective of our factor is to capture a 
market signal that is expected to evolve 
as new information becomes available, in 

particular when companies’ greenhouse 
gas emissions are updated. It is therefore 
important that the granular design of the 
CT factor is based on consistent data, 
regardless of the data provider used by 
market participants. By comparing seven 
data providers, Busch, Johnson and 
Pioch (2020) highlighted strong incon-
sistencies in indirect (Scope 3) data, 
whether reported by companies or 
estimated by external parties. To be as 
robust as possible, our CT is therefore 
only built on the GHG emissions 
intensity on the direct (Scope 1) and 
energy consumption (Scope 2) perim-
eters, for which there are higher levels of 
data consistency. Not explicitly taking 
into account Scope 3 emissions is also 
consistent with our sectoral approach. As 
pointed out by Ducoulombier (2021), 
reporting standards are not intended to 
support comparisons between firms, and 
estimates take insufficient consideration 
of firm-level circumstances to support 
intra-sector comparisons. Therefore, a 
company’s Scope 3 emissions data 
(currently available) is essentially linked 
to its sector. This information is already 
taken into account in our factor by the 
CPRS classification. 

Finally, our CT factor is constructed as 
follows: the long (‘brown’) leg is built as 
an equally weighted (EW) portfolio of the 
50% most GHG emissions-intensive stocks 
selected within each of the six CPRS 
sectors. Similarly, the short (‘green’) leg is 
built as an EW portfolio of the 50% least 
GHG emissions-intensive stocks selected 
within each of the six CPRS sectors. Then, 
the weight of each leg is set so that the 
factor is market neutral. In this way, we 
assume that the CT factor should not 
contain any market risk. This approach is 
consistent in the context of asset manage-
ment, where the market serves as a 
benchmark for risk.

Climate transition factor consistency
Identifying the ability of a factor to 
capture the sensitivity of a portfolio to the 

energy transition is difficult because we 
have not experienced energy transition 
episodes of sufficient magnitude in the 
past to test such a factor. For example, the 
maximum carbon price observed on the 
EU ETS market before 2020 was €30, 
while the average global carbon price 
associated with ambitious decarbonisation 
scenarios reaches several hundred dollars. 
The robustness of the CT factor should 
therefore be assessed on its design more 
than on its statistical power. To do so, we 
compare three candidate factors: the CT 
factor described above, a sector-relative 
intensity factor based on a traditional 
sectoral classification (IOS), and an 
intensity-only factor (IO). The IOS factor 
is based on the GHG emissions intensity 
relative to its Refinitiv Business Classifica-
tion (TRBC) sector (at the first level, ie, 
10 sectors) while the IO factor is built on 
a long-short strategy based on the GHG 
emissions intensity only.

A first test to assess the robustness of 
these factors is to compare their compo-
sition. Since the objective is to construct 
a signal centred on transition risks, it is 
important that this composition be 
representative of companies sensitive to 
the transition: the various sectors 
concerned should be represented, and 
both ‘green’ and ‘brown’ activities should 
be included. The composition of each 
factor shows that considering only 
carbon intensity leads to large weights 
outside of climate-sensitive sectors 
(figure 1). 

Indeed, in the considered universe 
(US), 49% of the stocks are not considered 
to be climate policy relevant according to 
the CPRS classification. In the IO factor, 
while the long leg contains mostly CPRS 
stocks, the short leg contains less than 
20% of CPRS stocks (26% for the short leg 
of the IOS factor). In the future, the signal 
from these factors will therefore be driven 
mainly by companies with little concern 
for transition risks while companies that 
might benefit from the transition (best in 
class within the CPRS sectors) will remain 

3  Our universe consists of the 500 largest companies in 
the US market.

CPRS clean	 Universe	 IO short	 IO long	 IOS short	 IOS long	 CT short 	 CT long

1 Fossil fuel	 6%	 0%	 20%	 3%	 4%	 9%	 9%
2 Utility	 3%	 0%	 25%	 5%	 7%	 10%	 11%
3 Energy-intensive	 31%	 8%	 20%	 8%	 31%	 51%	 51%
4 Buildings	 3%	 5%	 12%	 5%	 22%	 15%	 15%
5 Transportation	 7%	 1%	 9%	 2%	 12%	 15%	 14%
6 Agriculture	 0%	 0%	 0%	 0%	 0%	 0%	 0%
7 Other	 1%	 3%	 2%	 3%	 2%	 0%	 0%
No CPRS	 49%	 83%	 12%	 74%	 21%	 0%	 0%

1. Weights of different CT factors in climate sensitive sectors
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out of scope. For example, the five NACE4  
sectors most represented in the short leg 
of the IO factor are financial and IT 
sectors, which are not directly concerned 
by the energy transition (figure 2). This 
holding-based analysis thus shows the 
importance of restricting the construction 
of factors to the CPRS universe to target 
where the transition risks are likely to 
occur.

While the first goal of the CT factor is 
to capture sensitivity to the long-term 
transition, such a factor should already 
allow the identification of funds consid-
ered as ‘green’ or ‘brown’. A second test 
then consists of measuring the extent to 
which the sensitivity of a fund to the 
various factors is consistent with its 
current ‘green’ or ‘brown’ characteristic 
(estimated by a third party). Since there 
is no homogeneous definition of such 
funds, we consider a sample of ‘green’ 
funds as the top decile of funds of our 
universe5 based on the average share of 
corporate revenues that contribute 
positively to the climate mitigation (data 
from Morningstar). Conversely, we 
define a sample of ‘brown’ funds as those 
with the highest transition risk score (as 
defined by Morningstar). We show that 
the betas of the ‘green’ (respectively 
‘brown’) funds to the CT factor are 
significantly lower (respectively higher) 
than the average betas of the funds of our 
universe (figures 3 and 4). This confirms 
the ability of the CT factor to identify 
‘green’ and ‘brown’ funds from their 
prices. When considering correlation 
instead of betas, we find that the CT 
factor has higher correlations to green 
funds than the IO and IOS factors.

A final test is to check the consistency 
between our market-based approach and 

a holding-based approach built on the 
same metrics as those used to design the 
CT factor. On the one hand, it is impor-
tant to ensure consistency between these 
two approaches, which have the same 
ultimate objective: to measure the 
sensitivity of a portfolio to the energy 
transition. On the other hand, the use of 
a price signal is motivated by the fact that 
it can indirectly integrate more informa-
tion than a holding-based score, which 
can therefore explain the different results 
between the two approaches. To do this, 
we regress a holding-based risk metric 
constructed for each fund as the weighted 
share of constituents with carbon 
intensity above the median carbon 
intensity of their related CPRS main 
sector (only considering CPRS weights) 
against the beta of the fund to the CT 
factor. The coefficient is positive and 
significant, which confirms the consist-
ency of the market-based approach. 
Several reasons can explain the remaining 

different results between the two 
approaches. First, we observe that the 
outliers are essentially funds where the 
share of securities belonging to the CPRS 
sectors is low (figure 5) and where 
transition risks are therefore not a 
priority concern. Moreover, the market-
based approach is based on prices, which 
represent a large amount of information 
‘digested’ by market participants and can 
therefore capture more information than 
sector and carbon intensity. Two compa-
nies with the same carbon intensity and 
belonging to the same sector may indeed 
be impacted differently by the energy 
transition, for example if the regulations 
applicable in their respective countries of 
activity differ (presence or absence of 
carbon taxes) or if one of them has been 
the subject of climate change controversy. 
A market-based approach captures these 
kinds of differences, whereas a holding-
based approach only focuses on a small 
number of transition-related metrics.

4 The Statistical Classification of Economic Activities in the 
European Community (see https://ec.europa.eu/eurostat/
web/products-manuals-and-guidelines/-/ks-ra-07-015).
5 Our fund universe consists of 600 funds and ETFs 
offered in the US market.

NACE sector	 IO short

Non-life insurance	 19%
Other software publishing	 10%
Other activities auxiliary to financial services, except
  insurance and pension funding	 6%
Other monetary intermediation	 6%
Other credit granting	 4%
Total	 45%

2. Main sectors represented in 
the short leg of the intensity-
only (IO) factor

The distribution of betas is done on a universe of 615 funds (univ) and on a selection of the 10% of funds with the 
highest share involved in climate action, according to Morningstar (representing 62 ‘green’ funds). 

The distribution of betas is done on a universe of 615 funds (univ) and on a selection of the 10% of funds with the 
highest ‘carbon risk score’, according to Morningstar (representing 53 ‘brown’ funds). 

3. Beta distribution of ‘green’ funds to different transition factors

4. Beta distribution of ‘brown’ funds to different transition factors
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Disentangling climate transition 
risks from traditional risks
In its simplest form, the price-based 
transition risks correspond to the 
volatility that is due to an exposure to the 
CT factor:

Active CT risk Var Fi CT CT:
,

� 2 � �

Here b(i,CT) corresponds to the exposure of 
an instrument to the CT factor. Because 
the CT factor is market neutral, this risk 
does not include any market risk, hence 
the ‘active’ denomination. As detailed in 
Vaucher, Bouchet and Herzog (forthcom-
ing), this definition enables the manage-
ment of climate-transition risks via 
portfolio optimisation. The (absolute) 
annualised contribution of the CT factor 
of our sample of 1,361 active US funds 
and ETFs is shown in figure 6. On average, 
this contribution represents 30% of the 
total active risk in these funds. 

Much of the contribution of the CT 
factor can be traced back to the correla-
tions between the CT and traditional 
factors (figure 7). Notably, the CT factor 
exhibits important correlations to the 
industrials and materials sectoral factors, 
and to the value and investment factors. 
Although our factor is designed as a 
long-short factor within transition 
sensitive sectors, the two sectoral biases, 
industrials and materials, can be 
explained by the fact that these two 
sectors (GICS) are grouped within the 
same energy-intensive sector in the CPRS 
classification. This relationship suggests 
that a portfolio optimisation aiming at 

reducing the CT factor exposure will also 
tend to reduce the exposure of the 
portfolio to these factors if it is performed 
without controlling for factor exposures.

However, Vaucher, Bouchet and 
Herzog (forthcoming) show that the 
portfolios obtained by seeking to reduce 
the portfolio exposure to the IO factor will 
differ from the portfolios seeking to 
reduce the exposure to the CT factor. 
Because the carbon intensity is heavily 
correlated to the oil and coal sectors, 
reducing exposure to the IO factor will 

lead to divestments concentrated in these 
sectors, as well as investments in the 
retail and IT sectors. On the other hand, 
reducing exposure to the CT factor is 
obtained by performing divestments in a 
more diverse set of sectors including 
mining, steel production, shipping and 
agriculture, while moving relatively less 
capital to the IT sector.

Conclusion
To overcome the climate-related data 
gaps and to take advantage of the ability 
of market participants to integrate 
broader information in asset valuation, 
we propose a market-based measure of 
transition risks. In order to avoid the 
‘Don’t look up’ effect associated with 
validating a factor only from a historical 
perspective, we focus on the design of a 

The (holding-based) CT score is constructed for each fund with the same metrics used to design the transition 
factor. The coefficient of the regression line (0.15) is significant (t-stat 15.23).

The long (short) leg of each factor corresponds to an equally weighted portfolio of stocks with the 20% highest 
(lowest) performance expectations with respect to a given fundamental characteristic (size: free-float adjusted 
market cap; value: book-to-market ratio; investment: total asset growth over the last two years; profitability: 
gross profit to total asset ratios; volatility: weekly volatility estimated over the last two years; momentum: 
price momentum over the past 12 months without the last month). The relative weight of each leg in the final 
portfolio is calculated so as to cancel the exposure of the factor to the market factor. The long leg of the factors 
associated with industrial sectors simply corresponds to the cap-weighted stocks belonging to this sector, while 
the short leg is the market factor whose weight is adjusted to make the factor market neutral. More details are 
provided in Vaucher, Bouchet and Herzog (forthcoming).

5. Consistency between holding-based and market-based 
measure of transition exposure

7. Correlation between the CT factor and traditional factors
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relevant and robust climate transition 
factor sensitive to the long-term energy 
transition shocks. 

We propose a CT factor that captures 
both the sectoral and intra-sectoral 
dimensions of transition risks by relying 
on the climate-policy relevant sectors 
classification (Battiston et al [2017]) and 
on GHG emissions intensity. By construc-
tion, this leads to a reduction in the 
eligible universe of 50%, and thus avoids 
the factor signal being disrupted by 
companies little affected (negatively or 
positively) by transition risks, as opposed 
to a factor based solely on the GHG 
emissions intensity. While the main goal 
of our CT factor is to be forward-looking, 
we show that this factor is already able to 
efficiently identify funds considered as 
‘green’ or ‘brown’.

We also highlight that exposure to 
certain traditional factors such as value 
and investment is associated with greater 
transition risk. Without control, reducing 
exposure to transition risks may therefore 
lead to undesirable biases on other 
factors. 

Our market-based approach to 
transition risks allows the practical 
management of transition risks via 
portfolio optimisation. As detailed in 
Vaucher, Bouchet and Herzog (forthcom-
ing), these techniques are straightforward 
to implement as they only require already 
existing sets of financial factors. Climate 
transition risks are not only measurable, 
but they are also manageable with the 
same tools as those used to manage 
financial risks.

One of the major avenues for future 
research would be transposing this 

methodology to other complex environ-
mental issues such as biodiversity, where 
important data gaps remain but where 
the recent development of specific 
indicators would permit such a factor to 
be built. 
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In recent research, we examined the 
impact on realised performance of the 
permanent shift in investor preferences 
for low carbon energy investments, and 
how it relates to the expected returns of 
green power investments. 
While green infrastructure has 
outperformed the ‘core’ infrastruc-
ture market over the past decade, this 
is largely the result of excess demand 
for such assets that has pushed asset 
prices up and discount rates down. 
After controlling for a number of risk 
factors present in the returns of 
unlisted infrastructure equity invest-
ment, there is no persistent ‘green’ 
risk factor, but instead a ‘green price 
premium’ that investors have been 
willing to pay to increase their 
holdings of such assets.
We showed the impact of excess 
demand for green power investments 
on yield compression by building a 
measure of the liquidity of the market 
for green power investment. When 
too few green infrastructure invest-
ments are available in the market, 
asset prices increase and yields 
compress. Controlling for this effect, 
any outperformance of the green 
power sector over the considered 
period disappears.

This phenomenon peaked in 2019 and 
the expected returns of green power 
investments are now much lower than 
they used to be. As a result, realised 
returns should not be used directly as 
a proxy of the future performance of 
green power investments.

Is there a ‘green’ risk 
factor in infrastructure 

investment?
Noël Amenc, Associate Professor of Finance, EDHEC 

Business School; Director, Scientific Infra; Frédéric Blanc-
Brude, Director, EDHECinfra; CEO, Scientific Infra

I t is often argued that more sustainable 
investments should coincide with better 
financial performance. This raises two 

distinct questions:
l Firstly, is there any empirical evidence 
of superior performance by more sustain-
able or greener investments? And, if so, 
what might explain such outperformance, 
and can it be expected to persist in the 
future?
l Alternatively, is any superior perfor-
mance the result of an identifiable 
transition in investor preferences 
resulting in a positive shift in asset prices 
(higher realised returns) but not in higher 
expected returns?

In recent research (see Amenc and 
Blanc-Brude [2022]), we show that there is 
indeed empirical evidence of historical 
outperformance of green infrastructure 
investments (defined narrowly as wind and 
solar power projects). We then consider 
whether this finding implies continued 
future outperformance. In line with the 
literature, we argue that more sustainable 
infrastructure investments should in fine 
have lower expected returns than less 
sustainable ones, but that the recent shift 
in investor preferences in favour of greener 
power investments temporarily created 
excess demand, explaining realised 
performance over the past decade.

The existence of a systematic difference 
in pricing and expected returns between 
sustainable and less sustainable invest-
ments is examined in recent academic 
research (see Pastor, Stambaugh and 
Taylor [2022]; Alessi, Ossola and Panzica 
[2021]). Pastor, Stambaugh and Taylor 
summarise the reason why greener 
investments should have low expected 
returns: either investors bid up asset prices 
because they have increasing preferences 
for them, or the customers of greener 
businesses shift their demand towards 

their services, increasing their revenues 
and profits, and consequently their market 
value. As asset prices rise in response to 
greater demand, their cost of capital falls. 
In other words, the premise that greener 
companies and services – and the positive 
externalities they create – are increasingly 
valuable to investors and desirable to 
consumers (and the reverse for less green 
companies) implies that the market price 
of their equity must be higher, their cost of 
capital lower and their expected return 
(which, in equilibrium, must equal their 
cost of capital) also lower. As long as we 
accept the hypothesis of weakly efficient 
financial markets, in equilibrium risk must 
be adequately priced, which leaves little 
hope for the continued strong performance 
of green infrastructure investments in the 
near to long term.

Of course, in this context, it is still 
possible for greener investment to 
outperform during a period of persistent 
changes in investor preferences; for 
example, excess demand can drive up 
asset prices because investors expect 
preferences for green assets to have 
durably shifted from their previous level. 
As market prices increase and capital 
gains accrue to investors, these invest-
ments outperform but also exhibit 
increasingly lower expected returns.

As Pastor, Stambaugh and Taylor 
(2021) and others point out, the inverse 
relationship between price and expected 
return or yield is at its simplest in the case 
of bonds. For a buy-and-hold investor, the 
yield of a bond is the best estimate of its 
expected return, as bond prices change, 
its yields and expected returns change 
inversely. This is because bonds have no 
exposure to the upside – ie, the growth of 
the borrowers’ business. The same 
mechanism applies to the price and yield 
one the most clear-cut types of sustain-
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able investments: green power 
infrastructure.

Green power infrastructure can take 
several forms but, at its greenest, it can be 
narrowly defined as wind and solar power 
projects: new investments producing 
electricity (largely) without emitting 
greenhouse gases and potentially displacing 
existing power sources that do. In other 
words, with constant energy needs, wind 
and solar power projects are carbon-nega-
tive investments. This category of invest-
ment thus provides a convincing case of 
what the greenest types of green infrastruc-
ture investments might look like.

The way such projects are created and 
financed is what makes them resemble a 
bond. Solar and wind farms are typically 
incorporated as a standalone special-
purpose company with a finite life based 
on the economic life of the physical asset 
and on its business model, typically a 
long-term power purchase agreement 
(PPA) or a regulated electricity market. 
Such projects raise asset-backed finance 
once, sink capital into a finite physical 
asset, and its investors are repaid over a 
period of 25 to 30 years. Like bonds, such 
a company has very limited upside or 
growth options. Wind farms can be 
repowered and PPAs extended, but 
infrastructure assets are capacity-
constrained by design. Infrastructure 
companies thus have a maximum 
potential revenue defined mostly by 
ex-ante choices of size and technology. 
Hence, like many other project-based 
infrastructure investments, wind and 
solar project equity investments are akin 
to a bond with risky coupons.

It follows that if increasing demand for 
green infrastructure leads to better 
performance through capital gains, it 
must be because their yield or costs of 
capital is falling. Once excess demand has 
been absorbed by the market, the 
long-term performance of greener 
infrastructure should be lower than that 
of less green infrastructure investments.

In our research, we consider the 
question of what drives the past and 
future financial performance of green 
infrastructure in several steps. We first 
review the historical performance of 
investments in unlisted wind and solar 
project equity using the infraGreen1 index. 
We show that green infrastructure 
investments have indeed outperformed 
the market, including Core infrastructure, 
which is a natural benchmark for such 

projects. Until 2019, they also outper-
formed Core+ infrastructure, a riskier 
subset of unlisted infrastructure invest-
ments. In effect, over the past 10 years, 
green infrastructure has exhibited a very 
attractive risk-adjusted return profile, 
with higher annualised returns than core 
infrastructure and lower volatility than 
Core+ infrastructure.

We then follow the literature and 
examine the difference of performance 
between two portfolios created using 
asset-level data available in the EDHEC
infra database: a green power portfolio of 
unlisted equity investments in wind and 
solar projects only, and a brown power 
portfolio of unlisted equity investments in 
coal and gas power projects only. As 
argued above, we consider all the invest-
ments in the first portfolio to be equally 
(and highly) green. Likewise, coal and gas 
power projects are unequivocally brown2: 
coal and gas power projects are net 
contributors to greenhouse gas emissions. 
Conventional power generation emitted 
13.5Gt CO2e in 2020, ie, it is the leading 
contributor to total energy-related 
emissions (31Gt CO2e – IEA [2021]), 
ahead of the transportation and industry 
sectors. Even though the greenhouse gas 
emissions of coal and gas power projects 
vary and can, to some extent, be reduced 
or captured, even with constant energy 
demand, these investments are always 
carbon positive. In other words, our green 
power portfolio is always greener than our 
brown power portfolio.

Over a period extending from 2011 to 
2021, the brown power portfolio outper-
formed green power by a cumulative 
138bp. However, during that period, 
green power outperformed or matched 
the performance of brown power between 
2012 and 2015 and also between 2018 and 
2020. We show that these are also the two 
periods during which the cost of capital 
spread between green and brown power 
widened significantly as the market value 
of green power assets increased.

Next, we examine the differential 
performance of green and brown power 
investments through a ‘green-minus-
brown’ (GMB) portfolio of their returns 
over the past decade. Controlling for the 
effect of well-documented risk factors like 
size, leverage and profits, this portfolio 
produces a statistically significant negative 
‘alpha’. The realised green or brown 
power excess returns are also better 
explained by adding a GMB ‘effect’ to the 
usual set of risk factors. Prima facie, this 
result could be interpreted as the 
presence of a ‘green’ risk factor in the 
returns of green and brown power 
infrastructure investments. 

To determine the potential persistence 

of this effect, we examine the expected 
returns of green and brown power using 
data from infraMetrics and show that 
there is a significant and increasing spread 
between the weighted average cost of 
capital of the two portfolios. The weighted 
average cost of capital (WACC) spread or 
green price premium between the green 
and brown power portfolios is consist-
ently negative and growing: in 2021, it had 
widened to almost –350bp from about 
–100bp a decade earlier.

High realised performance has been 
accompanied by a significant decrease in 
the cost of capital of green power infra-
structure. In effect, all infrastructure 
investments have become more popular 
among investors in the past decade and 
have seen a reduction in their cost of 
capital, including brown power. However, 
the green power has seen a much larger 
decrease. Between December 2011 and 
December 2021, the infrastructure market 
saw a global reduction in WACC of 177bp 
(from 7.23% to 5.45%), while green power 
saw a greater reduction of 263bp, but the 
WACC of brown power is only 11bp lower 
in 2021 than it was in 2011.

We show that the evolution of the cost 
of capital spread of the two legs of the 
GMB portfolio explains away its negative 
alpha. In other words, taking yield 
compression into account, standard 
pricing factors suffice to explain the 
realised performance of the GMB 
portfolio.

We argue that the yield compression 
observed since 2011 is at least in part due 
to excess demand in the market for green 
power infrastructure – ie, demand that 
cannot be met immediately by a supply of 
green power investments. To show this 
effect, we construct a measure of excess 
demand for green power investments 
using the share of secondary transactions 
in all investments made by infrastructure 
investors in green energy. We argue that 
periods during which secondary transac-
tions represent a smaller fraction of the 
overall market transaction volume are 
periods of lower liquidity – during which 
excess demand for green power assets is 
likely to have been higher. We show that 
this measure of the green power market 
liquidity is strongly related to the 
performance and WACC spread of the 
GMB portfolio, as well as the realised 
performance of the green power portfolio. 
In other words, when the market for 
renewable power projects is less liquid 
and excess demand is more likely to build 
up, we tend to see an increase in the 
performance of the GMB portfolio and in 
the WACC spread between green and 
brown assets.

We conclude that, while green power 

1 The infraGreen index is available on EDHECinfra’s 
infraMetrics platform.
2  Irrespective of the debate on the inclusion of natural 
gas generation in the EU taxonomy (see Blanc-Brude et 
al [2021]).
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assets have experienced a period of strong 
performance (realised returns), they are 
likely to deliver lower returns going 
forward, since this performance was 
largely driven by the compression of their 
cost of capital, itself largely related to the 
build-up of excess demand in the market 
for green assets. Moreover, while the 
green price premium has increased in line 
with excess demand, the supply of green 
power investments has also increased 
considerably and the GMB WACC spread 
has been flat since 2019. As green 
infrastructure plays an increasingly 
important and ubiquitous role in inves-
tors’ portfolios, a consensus on the price 
and expected returns of green power is 
increasingly likely and new shifts in 
demand for such assets less so. In effect, 
green power may be one the few asset 
classes in which green pricing has already 
peaked (around mid-2019).

These results are important in 
understanding the role that renewables 
and conventional energy are likely to play 
in investors’ portfolios going forward, 
since increasing allocations to green 
energy should not be based on returns 
assumptions derived from historical 
returns. Indeed, as the supply of renew-
able investments has increased and, in 
some markets, become one of the 
dominant sources of energy, investor 
preferences for such assets should 
stabilise and excess demand disappear. A 
recent peer-group survey of asset 
allocations within the infrastructure asset 
class found that renewable energy already 
represents one quarter to one third of 
most investors’ infrastructure portfolios 
(Blanc-Brude et al [2022]). While 
investment in green infrastructure is 
likely to keep increasing on aggregate, its 
weight in infrastructure portfolios is 
unlikely to keep increasing monotonically.

Durably lower expected returns and 
cost of capital for green power is of course 
a good thing, since this reduces the overall 
cost of the energy transition. However, 
investors should not expect to receive 
high returns while contributing to the 
energy transition (have a positive impact) 
as long as they are only exposed to a pure, 
unleveraged basket of green power 
investments.

Conclusions
The premise that green investments may 
have different returns than brown ones 
partly springs from the notion of climate 
‘transition risk’: the expectation of higher 
future costs or lower future revenues for 
firms that emit greenhouse gases due to 
new regulations and shifts in consumer 
behaviour. However, the manner, timing 
and magnitude with which transition risks 

may materialise have been and remain 
largely unknown to investors. Today, it 
can seem unlikely that asset prices already 
fully reflect these risks when they remain 
very hard to assess and quantify.

When it comes to renewable energy 
projects and their fossil fuel (coal and gas) 
equivalents, however, the writing is already 
on the wall: wind and solar projects will be 
impervious to carbon taxes and coal and 
gas will not. In effect, coal projects are 
already being divested and phased out by 
large utilities, implying that their future 
value is considered to trend towards zero. 
This knowledge has already impacted asset 
prices in the case of green and brown 
power investments. The gradual realisation 
by investors that they have an increasing 
preference for green power investment and 
want to hold less conventional power 
investment has taken place over the past 
decade. In our 2022 survey of about 350 
large investor portfolios of infrastructure 
assets, EDHECinfra found not only that 
renewable energy corresponds to between 
one quarter and one third of investors’ 
infrastructure holdings by value at the end 
of 2021, but also that conventional gas and 
coal power projects represent as little as 1% 
to 3% of their portfolio, with the notable 
exception of North American investors, 
who hold 10% of their infrastructure 
investments in brown power assets. In 
other words, brown power investments 
have largely been divested by mainstream 
investors and green ones have already been 
integrated into portfolios on a significant 
scale. The shift in demand for green and 
brown power assets has already occurred.

One might add that higher demand for 
green power is not the only possible 
reason for the yield compression 
observed. For instance, infrastructure 
investment has been characterised by a 
significant evolution in the nature of 
investors valuing such assets, with the 
principal market increasing in size and 
scope and new cohorts of buyers and 
sellers showing increasing comfort with 
long-term, illiquid investments – ie, 
different risk preferences to previous 
generations of investors in infrastructure 
equity, who faced higher hurdle rates e.g., 
construction firms.

In 2011, green power projects had 
expected returns of ~8% and brown power 
projects ~9%. Their 10-year annualised 
total returns in 2021 were 16% and 17% 
respectively. These two figures may seem 
related but correspond in fact to very 
different economic fundamentals. The 
high historical performance of green 
power is explained by a significant 
compression in yields (expected returns) 
especially between 2012 and 2015 and the 
corresponding capital gains. Conversely, 

the performance of brown power was 
more driven by cash returns and less by 
yield compression. In effect, unlike other 
infrastructure investments, brown power 
investments have seen a slight increase in 
their expected returns since 2018.

Hence we find that the impact on 
performance of such shifts in the demand 
for green and brown investments cannot 
be equated with the appearance of a new 
‘green’ asset pricing risk factor. Instead, as 
predicted by theory (see Pastor, Stam-
baugh and Taylor [2021]), demand shocks 
have led to relatively high realised 
performance in the green power market 
but also lower expected returns.

For this situation to persist, there 
needs to be continued disagreement in the 
market about the future value of greener 
investments. Once all investors agree 
about the future value of greener or less 
green investments, investors are left 
holding the market portfolio, which 
includes current and future preferences 
for greener assets.

Going forward, as excess demand for 
green power investments is gradually met 
with additional supply of green power 
assets and effective allocations to green 
power become significant, our findings 
suggest that both the realised and 
expected returns of green power invest-
ments can be expected to converge.

Such a convergence, which reflects a 
long-term pricing equilibrium, leads us to 
conclude that there is no reason for 
superior performance by green infrastruc-
ture investments to continue. The 
so-called ‘green premium’ observed in the 
past does not correspond to the reward 
for a superior risk factor but instead to a 
temporary phenomenon of excess 
demand, which the supply side of the 
market eventually satisfied.
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Chasing the 
environmental factor

Emanuele Chini, Research Engineer, EDHEC-Risk Climate Impact Institute

This paper analyses whether US stock 
excess returns are pricing in expo-
sure to a climate/environmental risk 
factor. We try to answer this question 
through a latent factor model: the 
climate factor is estimated by starting 
from a large panel of US stock excess 
returns and a large set of firm-
specific environmental related 
characteristics (eg, emissions and 
environmental scores).

This environmental factor that we 
estimate can be interpreted (ex-post) 
as an emissions factor and it is only 
relevant to explaining the returns of 
stocks within the oil and utilities 
sectors.
Surprisingly, stocks of companies 
within other high-emitting sectors, 
such as chemicals and steel, are not 
affected by this factor.

Introduction
Climate-aware investment management is 
still in its infancy but is growing fast. As 
documented by Krueger, Sautner and 
Starks (2020) and Strobel and Wurgler 
(2021), investors are paying more and 
more attention to climate and environ-
mental matters. Consequently, their 
demand for means to assess their 
portfolio’s exposure against these new 
types of risks is also increasing. Following 
this trend, data and analytics providers 
specialising in climate and environmental 
scores have proliferated. However, ESG 
metrics diverge across providers (see 
among others Berg, Kolbel and Rigobon 
[2022]), and environmental metrics, at 
least beyond Scope 1 and 2 greenhouse 
gas emissions estimates (Busch, Johnson 
and Pioch [2020]), are also divergent.

Furthermore, it is not yet clear if 
companies with low environmental 
footprints should earn lower or higher 
returns. Indeed, despite the rapidly 

increasing number of academic studies 
trying to assess the impact of climate 
risks on equities, the ‘sign’ of the effect is 
still not clear, and the reported results 
are sometimes in conflict with one 
another. Different definitions of ‘green’ 
give rise to different results. Bolton and 
Kacperczyk (2021, 2022), Hsu, Li and 
Tsou (2022), and Alessi, Ossola and 
Panzica (2021), among others, find that 
high polluting companies earn higher 
returns because they are exposed to 
regulatory risk (eg, a carbon tax). On the 
other hand, Pastor, Stambaugh and 
Taylor (2022), In, Park and Monk (2019), 
and Cheema-Fox et al (2021) find that 
companies with a good environmental 
score outperform ‘brown’ companies 
because of the recent shift in investor 
preferences for green assets. This 
preference shift is the cause of abnormal 
returns, and in the future, green compa-
nies are not expected to persistently 
outperform their brown peers. 

In this work we contribute to the 
climate finance literature by assessing 
whether ESG and environmental (which 
we hereafter refer to as environmental) 
characteristics of companies line up with 
excess stock returns. Instead of defining a 
greenness measure and then assessing 
whether it is related to a risk premium, 
we use a conditional latent factor model: 
the instrumented principal component 
analysis model (IPCA) developed by Kelly, 
Pruitt and Su (2019), which we extend to 
deal with financial and non-financial 
characteristics separately.

The model
In their seminal work, Kelly, Pruitt and 
Su (2019) develop the IPCA model to 
extract a small number of latent factors 
(and their betas), starting from a panel of 
equity excess returns and a large set of 
observable company-level characteristics, 
which are the instruments used to infer 
the betas.

The general IPCA specification for the 
excess return rt+1,i on the i-th asset of the 
Nt+1 assets observed at time t+1 and 

described by K latent factors ft+1 is:

rt+1,i  = ai,t + bi,t ft+1 + ei,t+1 � (1)

where the dynamic factor betas bi,t and 
alpha ai,t are inferred from the L-dimen-
sional vector zi,t that contains the i-th 
asset’s observable characteristics valued at 
time t (and a constant):  

ai,t  = z'
i,t Ga + ea,i,t and bi,t  = z'

i,tGb  + eb,i,t� (2)

The L ´ K matrix Gb and the L-dimen-
sional vector Ga are the (constant-in-time 
and constant-across-assets) parameters 
that map characteristics into betas and 
alphas, respectively, and by their 
inspection one can understand the 
‘identity’ of the estimated latent factors. 
It is worth saying that to properly 
compare the different values in Gb and 
Ga, we need to standardise the character-
istics by computing, for each date, the 
respective cross-sectional ranks and 
normalising them (to the [–0.5, 0.5] 
interval). From equation (2) it is clear 
that the values of an asset’s betas and 
alpha change when the asset characteris-
tics change. Nevertheless, the inclusion 
of eb,i,t and ea,i,t indicates that alphas and 
factor loadings may not be perfectly 
determined by the observable instru-
ments. It is also important to note that 
by indexing characteristics with time t 
and returns with t+1, IPCA aims to 
extract predictive power for future 
returns from prevailing observable 
information available at the forecast 
time.

To fully understand the innovative 
contribution of this methodology to the 
asset pricing literature, it is worth 
mentioning that characteristics are 
often used to proxy companies’ exposure 
to risk factors, such as size and book-to-
market in the three-factor model of 
Fama and French (1993). Typically, we 
can build the mimicking portfolio of the 
risk factor associated to a specific 
characteristic, say, size, by sorting 
companies by size into quantiles and 
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1. Cumulative returns of the 
latent environmental factor
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then using the extreme quantiles for the 
long and short legs of the portfolio. For 
instance, stocks with size ratings above 
the 70th percentile (below the 30th 
percentile) could be chosen as constitu-
ents of the short (long) leg of the 
mimicking portfolio. In this way, any 
observable characteristics can be used to 
build a factor. The consequence is the 
‘factor zoo’ documented by Harvey and 
Liu (2020): over 400 factors have been 
published in top academic financial 
journals, and this number is definitely 
unrealistic. The main idea under the 
IPCA model is that if there are many 
characteristics which are potentially 
informative of returns, we can reduce 
the dimensionality of the factors (built 
as long-short portfolio on characteris-
tics) by computing the first k principal 
components of these factors, where k is 
arbitrarily chosen, but has to be far 
smaller than the number of characteris-
tics.1 This dimension reduction allows 
us to concentrate the useful information 
contained in a large number of charac-
teristics in few factors.

In their work, Kelly, Pruitt and Su 
(2019) use 36 financial characteristics 
(such as market capitalisation, total 
assets, book-to-market) to extract five 
factors and show how their model 
explains the cross section of equity 
returns more accurately than existing 
factor models. 

In this work, we extend the original 
IPCA model to allow for two separate 
groups of characteristics and constrain 
each of the IPCA factors to depend on 
only one of the two groups. We integrate 
the characteristics used by Kelly, Pruitt 
and Su (2019) with an additional set of 
environmental characteristics and ESG 
scores (described in the next section) to 
extract five financial factors and one 
environmental factor. Therefore, starting 
from a panel of equity excess returns 
and two sets of observable company-
level characteristics that we observe for 
each company (namely, financial 
characteristics and environmental 
characteristics), we can extract two 
groups of factors. The first group 
depends only on financial characteris-
tics, and the second group only on 
environmental characteristics. This 
innovation enables us to clearly inter-
pret the estimated factors as either 
purely financial or purely 
environmental.

Data
To perform our analysis, we need to 

1  This is a simplified version of the model; however, the 
intuition of IPCA is the same. 

collect financial and environmental 
characteristics, and the returns. We focus 
on US stocks in the period July 2008–
December 2021. 

Among the financial characteristics 
used in Kelly, Palhares and Pruitt (2021), 
we select those whose contribution to the 
model was found to be statistically 
significant. We retrieve values for them 
from the Global Factor Data open-source 
dataset by Jensen, Kelly and Pedersen 
(2022). The financial characteristics that 
we observe for all the companies in our 
sample for at least one period are: total 
assets, book to market, market beta, 
earning to price, free cashflow, idiosyn-
cratic volatility, investment, size, share 
turnover, leverage, profit margin, ROE, 
bid-ask spread, closeness to 52-week high, 
momentum, long-term reversal, short-
term reversal and a characteristic which is 
constant over time and among stocks. It 
captures the systemic risk common among 
all the stocks. 

The environmental characteristics that 
we use are from either the MSCI ESG IVA 
dataset or Eikon. We use ESG scores, ‘E’ 
scores, emissions scores both from MSCI 
and Eikon; carbon intensity and carbon 
emissions from Eikon; and the environ-
mental score weight from MSCI, which is 
intended to measure the salience of 
environmental risks for firms. Since 
emissions, carbon intensity and the 
weight of the environmental score highly 
depend on sectors, we decompose each of 
these three characteristics in a sectoral 
component and an idiosyncratic compo-
nent. As we observe that the three 
sectoral components are highly correlated, 
we keep only the sectoral carbon intensity 
in order to avoid multicollinearity. (For 
robustness check, we perform the analysis 
substituting sectoral carbon emissions for 
sectoral carbon intensity as well, and the 
results do not change.) 

To make sure that environmental and 
ESG characteristics are not informative of 
returns only because they are correlated 
with company fundamentals, we orthogo-
nalise environmental characteristics with 
respect to financial characteristics at each 
date, by running for each environmental 
characteristic a cross-sectional regression 
on the financial characteristics. It is worth 
noting that one could orthogonalise 
financial characteristics, with respect to 
environmental characteristics, without 
loss of generality. However, since we are 
interested in understanding whether an 
environmental risk factor exists on top of 
standard factors, we decided to orthogo-
nalise environmental characteristics with 
respect to financial characteristics by 
regressing each environmental character-
istic on the financial characteristics. 

The annualised average return is 4.4%, annualised 
standard deviation 11.0%, and annualised Sharpe 
ratio 0.40.

Empirical analysis
Turning to our empirical results, figure 1 
displays the cumulative returns of our 
environmental factor. 

To understand better the ‘identity’ of 
this environmental factor, it is worth 
recalling that it is (almost) the first 
principal component extracted by long/
short portfolios built on the environ-
mental characteristics. The ‘weights’ of 
these portfolios in forming the first 
principal component (that is, our 
environmental factor), are informative 
of which environmental characteristics 
determine the companies’ exposure to 
the factor. Figure 2 shows that charac-
teristics related to emissions are the 
main driver of the firms’ exposure to 
this factor. In fact, sectoral carbon 
intensity, adjusted carbon emissions and 
both Eikon’s and MSCI’s emission scores 
are the first four characteristics in 
absolute value. Eikon’s emission score is 
a rating given by Eikon that assesses the 
commitment of the company to reduc-
ing its emissions, and it is normalised 
across industries. Similarly, MSCI’s 
emission score is also informative of a 
company’s commitment in reducing its 
emissions but it is not normalised across 
industries. 

We now assess the explanatory power 
of our IPCA model for stock returns. 
Figure 3 displays in-sample R2s. The 
in-sample analysis is performed by 
estimating the model parameters only 
once using the full dataset. Then, in order 
to track the marginal contribution of the 
different model components in explaining 
returns, in figure 3 we show values of the 
R2s computed by using different subsets of 
our estimated factors and/or alphas, 
namely: 
l only first k financial systematic risk 
factors (k-th column with k = 1,... 5), 
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2. Characteristics related to emissions are the main driver of the 
firms’ exposure to this factor
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l the financial systematic risk factors and 
financial component of alpha (column 6), 
the financial systematic risk factors and 
the entire alpha (column 7), and 
l all components of the model specified 
(column 8). 

It is worth specifying that we estimate 
the full model only once, therefore the 
different columns of figure 3 enable us to 
compare directly the incremental 
informational content of the different 
building blocks of our model. Comparing 
the last two columns in the figure, row all 
sectors, we observe that stock returns are 
remarkably well described by systematic 
financial factors, leaving little room for a 
common undiversifiable risk factor with 
an environmental connotation. In fact, 
the R2 increment due to the environmen-
tal factor is extremely limited (+0.43%). It 
is worth saying that an easy way to 
increase this figure would be to orthogo-
nalise financial characteristics with 
respect to environmental characteristics 
and therefore to cluster information that 
is common among the two sets of 
characteristics in the environmental 
factor. However, this does not increase 
the overall performance of the model.

However, since environmental 
characteristics may be particularly 
relevant only for some industries, we 
group stocks according to their sectors 
(we use Fama-French 30 sectors defini-
tions). Then, for each group, we assess 
how the IPCA environmental factor 
explains returns of stocks in that sector by 
measuring the R2s. In the last two rows of 
figure 3, we show the performance 
measures for only the sectors that are 
affected by the environmental factor: oil 
and utilities. The utilities sector’s R2 
increases from 27.84% to 30.12%, stocks in 
the oil sector are similarly affected by the 
environmental factor:  their R2 increases 
from 45.29% to 47.73%. 

Importantly, other sectors that are 
highly affected by emissions (either 
directly or indirectly), namely chemicals, 
transportation, steel and automotive, are 
on average not affected by the environ-
mental factor, and do not seem to price an 
environmental risk at all (figure 4). 
Exploring the causes (and consequences) 
of different (and little) climate risk 
exposure for different sectors constitutes 
an interesting avenue for future research. 

Conclusions
We study to what extent environmental 
firm characteristics affect equity returns. 
This is particularly relevant for investors, 
since ESG and climate-aware investing 
has gained traction quickly, but it is not 
yet clear whether or how environmental 
measures affect returns. To answer this 

Sector	 F1	 F1:F2	 F1:F3	 F1:F4	 F1:F5	 F1:F5 +aF	 F1:F5 +a	 F1:F5 + G1 +a

All sectors	 28.19	 29.78	 30.84	 33.12	 35.41	 35.50	 35.50	 35.93
Oil	 41.58	 41.19	 43.91	 44.90	 45.18	 45.28	 45.29	 47.73
Utilities	 8.65	 8.74	 10.74	 14.17	 27.74	 27.73	 27.84	 30.12

Sector	 F1	 F1:F2	 F1:F3	 F1:F4	 F1:F5	 F1:F5 +aF	 F1:F5 +a	 F1:F5 + G1 +a

Chemicals	 39.57	 41.13	 41.96	 42.61	 44.54	 44.43	 44.42	 44.24
Transportation	 31.81	 32.36	 32.70	 32.85	 36.51	 36.57	 36.57	 35.87
Steel	 40.34	 40.41	 40.57	 39.55	 40.60	 40.57	 40.58	 40.63
Automotive	 41.54	 43.73	 44.38	 45.02	 46.13	 46.18	 46.16	 46.26

3. Assessing the explanatory power of our IPCA model for stock 
returns

4. Stocks in other sectors highly affected by emissions are not 
affected by the environmental factor

This table shows in-sample R2s. The model is estimated once on the entire asset universe, with five financial 
factors, one environmental factor. The R2s are computed by using either all the stocks, stocks only in the oil 
sector, or stocks only in the utilities sector. In the first column (F1), we compute the different R2s by using only the 
first financial factor, then we use the first two financial factors (F1:F2), and so on until we use the five financial 
factors (column F1:F5). The sixth column shows the R2ss computed by using all the financial factors and the 
financial component of the alpha namely aF. In column F1:F5 + a we include the environmental component of the 
alpha and in the last column we finally add the environmental factor. The difference between the last two columns 
is the marginal contribution of the environmental factor to the model.

This table shows in-sample R2s. The model is estimated once on the entire asset universe, with five financial 
factors, one environmental factor. The R2s are computed by using either stocks in only the chemicals sector, only 
the transportation sector, only the steel sector, or only the automotive sector. In the first column (F1), we compute 
the R2s by using only the first financial factor, then we use the first two financial factors (F1:F2), and so on until we 
use the five financial factors (column F1:F5). The sixth column shows the R2s computed by using all the financial 
factors and the financial component of the alpha, namely aF. In column F1:F5 + a we include the environmental 
component of the alpha and in the last column we finally add the environmental factor. The difference between 
the last two columns is the marginal contribution of the environmental factor to the model.

question, we use an innovative methodol-
ogy that allows us to control for a rich set 
of information potentially useful to 
explain returns. With our methodology, 
we extract an environmental factor and 
find that companies’ betas to this factor 
are mainly driven by sectoral carbon 
intensity and Eikon’s emissions scores.  
Sectoral carbon intensity is the average 
carbon intensity (Scope 1 and Scope 2 

emissions normalised by revenues) of 
companies operating in the same sector. 
On the other hand, Eikon’s emissions 
score is a metric that is sector neutral and 
that measures the effort of a company in 
reducing its emissions compared to its 
peers. We find that this factor is impor-
tant for the in-sample pricing of stocks 
only in the oil and utilities sectors, above 
and beyond financial factors (which suffice 
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to explain the cross section of stock 
returns of the companies in the other 
sectors). However, the environmental 
factor’s contribution to explaining returns 
is quite modest. 

Emissions-related characteristics are 
the main drivers of the environmental 
factor, and this factor matters only for 
companies operating in either the oil or 
utilities sectors, which is not a surprise as 
these two sectors are among the most 
polluting. What is more surprising is that 
stocks within other high-emitting sectors 
are not affected by our environmental 
factor.

It is difficult to understand why this is 
the case. Unless damages are expected to 
materialise so far into the future that 
they become negligible after discounting, 
we would expect asset prices to be 
strongly affected by climate risk: either 
because we do little and are hit by the 
full consequences of 3°C or more of 
warming, namely physical risk; or 
because we do a lot, and we have to 
rewire the whole economy, namely 
transition risk. This suggests that prices 
sooner or later will have to adjust: 

expected cashflows and earnings ulti-
mately turn into realised cashflows and 
earnings. Having said that, we do not 
have a clear view about why high-emit-
ting sectors are affected differently by 
our environmental factor. Analysing the 
reasons (and the consequences) of these 
differences would be an interesting 
avenue for further research.
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The impact of climate 
change news on green-
minus-brown portfolios

Jean-Michel Maeso, Senior Quantitative Researcher, EDHEC-Risk Climate 
Impact Institute; Dominic O’Kane, Research Director, EDHEC-Risk Climate 

Impact Institute; Professor of Finance, EDHEC Business School

Recent literature has sought to 
investigate the correlation between 
climate news and equity market 
performance, with the aim of 
quantifying a measure of a so-called 
‘climate beta’.

Using a variety of language models 
and high-quality English-language 
newspaper sources, including the 
Financial Times and New York 
Times, we construct an unexpected 
climate news index (UCNI) for each 
model and source.

We measure the impact of these 
UCNIs, plus an aggregate UCNI 
over all the news sources, on 
a range of green, brown, and 
green-minus-brown (GMB) equity 
portfolios, constructed by sorting 
S&P 500 firms based on their carbon 
intensity.

For most of the language models 
considered, the sensitivity of returns 
to an increase in the corresponding 
aggregated UCNI index, is negative 
and statistically significant at 1% 
for brown portfolio returns, but it 
is not significant for green portfolio 
returns.

In recent years, several papers have 
examined the link between climate 
news and equity market returns, hoping 

to identify a measure of a so-called 
‘climate beta’, beginning with Engle 
(2020). Using a variety of language 
models and high-quality English-lan-
guage newspaper sources, including the 
Financial Times and New York Times, we 

construct an ‘unexpected climate news 
index’ (UCNI) for each model and 
source. We measure the impact of these 
UCNI, plus an aggregate UCNI over all 
the news sources, on a range of green, 
brown, and green-minus-brown (GMB) 
equity portfolios, constructed by sorting 
S&P 500 firms based on their carbon 
intensity. We find that the relationship 
between the UCNI and the green, brown 
and GMB portfolio returns is overall not 
statistically significant for individual 
news sources across all the language 
models. However, it does become 
significant for all the aggregate UCNI 
indices, suggesting that combining 
different news sources increases the 
signal-to-noise ratio of the climate beta. 
For most of the language models 
considered, the sensitivity of returns to 
an increase in the corresponding 
aggregated UCNI index is negative and 
statistically significant at 1% for brown 
portfolio returns, but is not significant 
for green portfolio returns. This is for the 
period from July 2012 to November 
2021. These results suggest that the 
UCNI factor extracted from an aggregate 
news index is a climate risk proxy whose 
beta coefficient can explain the returns of 
brown and hence GMB portfolio 
performance.

News data
To perform this analysis, we require 
digitised, daily, English-language, 
high-circulation and high-quality news 
sources with a European and US perspec-
tive, including at least one with a dedi-
cated financial market focus. For these 
reasons we have chosen the following 
news data sources:
l The Financial Times (FT) digital 
archive. The Financial Times is widely 

recognised as the leading European 
English-language financial newspaper. It 
is published daily, except Sundays, and 
covers not just business news, but also 
world politics and current affairs.
l The Lexis Nexis (LN) database of 
newspapers. This provides access to many 
thousands of newspapers internationally. 
From these we selected the New York 
Times (NYT), the Los Angeles Times 
(LAT), The Guardian (UKG) and The 
Daily Telegraph (DT). 

We use articles from these news 
sources, grouped at a daily frequency, 
over the period from 2 January 2005 to 3 
November 2021. We assume that an 
article appears in the morning of the first 
publication date. This can be a different 
time depending on whether the news 
source is in the US or Europe. As Europe 
is several hours ahead of the US, the 
arrival of news from US and European 
news sources will impact the US equity 
market on the same day. To align the 
arrival of weekend news with the financial 
markets, we adjust the publication date of 
news stories that appear on a Saturday or 
Sunday to the following Monday, the 
earliest date on which this news can 
impact the US equity market. We do not 
rely on any tagging provided by the news 
sources.

We wish to extract only climate 
change-related articles and do so by 
selecting only those articles that contain 
one or both bigrams ‘climate change’ and 
‘global warming’. Figure 1 shows the 
counts of the total number of selected 
articles per newspaper, per year. We see 
that The Guardian is the leading publisher 
of climate change-related articles over 
time among our corpus of news sources, 
followed by the Financial Times and The 
Daily Telegraph.
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We consider news in the form of 
newspaper articles and so each article has 
a headline and content. The headline is 
typically added by a sub-editor who has 
read the article and wishes to summarise 
the key message of the article for the 
reader. To assist the reader, the headline 
usually reflects the most important part of 
the article and any associated positive or 
negative sentiment. For this reason, we 
examine both the article headline and the 
article content to see if the headline can 
provide a clearer measure of article focus 
and sentiment than an analysis of its 
longer and more complex content.

To quantify the newspaper media’s 
attention to climate change, we first need 
to identify a climate change article. Care 
needs to be taken to avoid false positives. 
Hence, we search for bigrams – combina-
tions of two words – that ensure the 
subject matter is related to climate 
change. Work by Engle et al (2020) and 
others has done this using the search term 
‘climate change’. However, the bigram 
‘global warming’ has also been widely 
used as a synonym. To determine whether 
we should include it, we perform searches 
for articles that contain (i) ‘climate 
change’, (ii) ‘global warming’, and (iii) one 
or both of ‘climate change’ or ‘global 
warming’. We focused on the Financial 
Times news source and calculated the 
fraction of daily articles that are returned 
by these search terms. Using the fraction 
of articles, rather than the number, 
corrects for the fact that the total number 
of daily Financial Times articles has 
varied significantly over this period.1 All 
three of these time series are shown in 
figure 2. We observe that use of the 
bigram ‘global warming’ has declined in 
relative terms over time, but it is still 
used. The bigram ‘climate change’ has 
clearly become the dominant bigram. To 
ensure that we capture as many climate 
change articles as possible, and especially 
those in the earlier period of analysis, we 
include both in our definition of a climate 
change article. Using this definition, figure 
1 shows the count of the total number of 
such articles per newspaper, per year. 

Climate change news indices 
overview
We explore several approaches for 
constructing a climate change news index 
(CNI) from newspaper articles. If there is 
a link between climate change news and 
market price movements, then we would 
expect the link to be strongest for the 

1 Over the 2005–21 period the monthly number of 
Financial Times articles ranged from around 2,000 in 
2006 to over 6,000 in 2014, then back down to around 
3,000 in 2020.

This figure measures the newspaper media attention to the subject of climate change from 2005–21 by calculating 
the percentage of daily FT articles that contain the term ‘climate change’, the percentage that contain the term 
‘global warming’ and the percentage containing either term. We apply a 30-day moving average. The vertical lines 
are climate change-related events – see figure 3 for the corresponding numbered list of events.

2. Financial Times attention to the climate change topic

Climate change Climate change or global warmingGlobal warming
10

8

6

4

2

0
2006 2008 2010 2012 2014 2016 2018 2020 2022

% 
of 

art
icl

es

1 2 3 4 5 6 7 8 9 10 11 12

Year	 FT	 DT	 UKG	 LAT	 NYT

2005	 339	 413	 1,127	 313	 294
2006	 523	 645	 1,673	 611	 385
2007	 1,304	 1,241	 2,676	 1,053	 1,198
2008	 1,113	 723	 2,499	 762	 997
2009	 1,495	 885	 3,914	 673	 1,169
2010	 1,093	 1,023	 2,480	 548	 666
2011	 706	 783	 1,932	 329	 334
2012	 739	 899	 1,853	 306	 287
2013	 800	 822	 1,914	 339	 332
2014	 800	 639	 2,284	 468	 399
2015	 1,212	 715	 5,278	 771	 600
2016	 892	 429	 4,881	 660	 532
2017	 1,003	 465	 2,002	 776	 491
2018	 1,062	 566	 2,570	 697	 389
2019	 2,040	 1,393	 4,051	 984	 618
2020	 1,909	 1,180	 3,091	 697	 485
2021	 2,218	 1,866	 3,718	 1,076	 701

Event no	 Date	 Description

1	 8 July 2005	 G8 Summit Scotland
2	 9 Dec 2005	 Montreal CC conference
3	 21 Jun 2006	 UK CC and Sustainable Energy Act 2006
4	 14 Dec 2007	 Bali UN CC Conference
5	 9 Jul 2008	 G8 Summit
6	 19 Dec 2009	 Copenhagen UN CC Conference
7	 7 Dec 2012	 Doha UN CC Conference
8	 12 Dec 2015	 Paris Agreement signed
9	 7 Nov 2016	 Marrakech UN CC Conference
10	 1 Jun 2017	 US President Trump withdraws from Paris Agreement 
11	 Dec 2019–Jan 2020	 Australian wildfires, high temperatures
12	 13 Nov 2021	 G8 Summit Scotland

1. Counts of climate change articles by year for each news source

3. Most active climate news events

This figure reports the count of climate change articles by year in the Financial Times, The Daily Telegraph, The 
Guardian, Los Angeles Times and The New York Times. Note that 2021 only includes articles up to 3 November.

This figure identifies the most active climate news events seen in figure 2. For conferences we have used the 
conference end date, when the final agreement is usually announced.
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index that best captures the quantity, 
content and sentiment of the climate 
change news. The index construction 
approaches we use, in order of increasing 
level of sophistication, are as follows:
l Attention – The number of climate 
change articles published each day.
l Similarity – The TF-IDF2 cosine 
similarity between each day’s climate 
change articles of the newspaper and a 
representative climate change document.
l Concern – Climate change concern 
using word frequencies based on the 
LIWC lexicons.3 Concern is high if the 
number of ‘negative words’ in a climate 
change article is higher than the number 
of ‘positive words’ and the fraction of ‘risk 
words’ is high.
l VADER – We use a rules-based lexical 
approach called VADER that assigns a 
sentiment polarity score to specific words 
to determine if the climate change article 
sentiment is positive or negative.
l BERT with Fine-Tuned Sentiment – We 
take a BERT language model as described 
in Devlin et al (2018) and fine-tune it to 
identify sentiment using human-labelled, 
finance-related training examples.
l ClimateBERT with Fine-Tuned 
Sentiment – We take the domain-specific 
Climate-BERT model by Webersinke et al 
(2021) and fine-tune it to identify 
sentiment using human-labelled, finance-
related training examples.

Our simplest attention-based measure 
counts the daily number of climate change 
articles published. Such an approach was 
analysed in the media bias model of 
Gentzkow and Shapiro (2010), who noted 
that the number and length of the articles 
reflect reader interest. For the next level 
of sophistication, we use an approach that 

each news source b, and index CNIb(t), 
the standard deviation of the index is 
calculated as:
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where s- =1/nB ∑bsb. The aggregate index 
at date t has been standardised by a 
volatility estimated over a three-year 
rolling window prior to t, so there is no 
look-ahead bias.

Climate change news and equity 
portfolios
We first assign each stock of the 500 US 
stocks with the largest capitalisation 
(according to CRSP) to one of the three 
categories of ‘green’, ‘neutral’ and ‘brown’ 
on a given date. To identify which stocks 
are green and which are brown, we use a 
selection method that is based on the 
carbon intensities of individual compa-
nies. These have been determined using 
combined Scope 1 and Scope 2 emissions 
from FactSet’s ISS ESG carbon emissions 
data. A stock is labelled as green if the 
corresponding company has low CO2 
emissions per unit of revenue and 
similarly a stock is labelled as brown if the 
corresponding company with high CO2 
emissions per unit of revenue. The 
remaining stocks are labelled as neutral. 
Vaucher et al (2023) underline that 
several papers such as Ardia et al (2022) 
rely on this metric to sort stocks, but 
other papers use up to 10 different 
metrics such as environmental scores or 
to sort stocks (see Görgen et al [2020] for 
more details).4 

Given a set of climate CNIs described 
above, the next step is to determine 
whether these indices have an impact on 
equity returns. We examined three liquid 
US stock portfolios engaged respectively 
in a green strategy, a brown strategy and a 
GMB portfolio strategy that we expect to 
be sensitive to climate change risk. The 
green portfolio and brown portfolio are 
equally weighted and consist of the 30% of 
stocks with respectively the lowest and 
highest carbon intensity.5  

The CNI indices that we have calcu-
lated may embed some auto-correlation 
effects and these must be removed if we 
are to correctly capture the unexpected 
changes in the climate news index. The 
unexpected climate news innovations 

detects actual semantic meaning within 
the news articles by quantifying the 
degree of emotional concern. This is a 
challenging task as the emotional 
sentiment of long and highly articulate 
articles is not always simple to extract. 
For this reason, we then turn to state-of-
the-art language models such as the BERT 
Transformer-based model from Devlin et 
al (2018), and finally to the CBERT model 
by Webersinke et al (2021), which has 
been specifically designed to better 
understand climate-related texts. We 
developed two language models for the 
VADER, BERT and CBERT approaches 
presented earlier: one using headlines 
(VAD-H, BERT-H and CBERT-H) and 
another using article content (VAD-S, 
BERT-S and CBERT-S) for sentiment 
analysis.

We use these different approaches to 
construct a family of climate news 
indices (CNIs), each a daily time series 
from 2005 to 2021. We do this for both 
the article content and the article 
headline. The headline is short and 
should indicate the sentiment of the 
article. As such it may be easier to 
extract the article’s sentiment from the 
headline than the entire article. 

To perform a market analysis using our 
CNIs, we must first isolate the unexpected 
component of the daily climate change 
news index changes. To do this, we 
assume that the CNI obeys an AR(1) 
process where the changes in unexpected 
climate change news are the innovations. 
Calibrating the CNI to this process allows 
us to extract a family of unexpected 
climate change news innovation (UCNI) 
indices. We refer the reader to Maeso et al 
(2023) for further details on the construc-
tion of these indices.

A source-aggregated climate change 
news index
In addition to the set of CNIs for each 
news source, we also wish to construct a 
single aggregated index across all five 
news sources. Doing this increases the 
total number of articles being used in the 
construction of this index and might be 
expected to reduce any statistical noise in 
the article counts and so enhance any 
signal that may exist across the individual 
indices.

Rather than simply average the 
individual newspaper indices, we first 
standardise them so that each index has a 
unit standard deviation over a three-year 
period of T dates. This ensures that a 
newspaper index that experiences a high 
level of variability in both article number 
and sentiment score is adjusted to be 
more comparable with a newspaper index 
that has a lower variability. Hence, for 

2 TF-IDF is the Term Frequency Inverse Document 
Frequency metric. It measures how important a word is 
to a document located in a collection of documents.
3 See https://www.liwc.app/
4 Vaucher et al (2023) emphasise that sorting stocks 
according to carbon intensity may lead to large weights 
toward sectors that are not relevant from a climate policy 
standpoint according to the classification of economic 
activities developed after Battiston et al (2017) to assess 
climate transition risk. This classification is called 
Climate Policy Relevant Sectors (CPRS).
5 We also tested an alternative approach for the GMB 
portfolio construction developed by Vaucher et al (2023). 
The long (green) leg of the GMB portfolio is built as an 
equally-weighted (EW) portfolio of the 50% of the stocks 
with the lowest carbon intensity selected within each of 
the six CPRS sectors. Conversely, the short (brown) leg is 
built as an EW portfolio of the 50% of the stocks with the 
highest carbon intensity selected within each of the six 
CPRS sectors. The findings generated via this alternate 
methodology concur with those obtained through the 
initial methodology.
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index, UCNIt, is defined by:

UCNI CNI CNI It t t t� � �� ���� � � 1

where It–1 is the information to time t – 1. 
Each value of the UCNIt is calculated as 
the residual of an AR(1) process calibrated 
to the CCNIt over the previous three 
years. The aggregate UCNIt for the 
different language models are shown in 
figure 4.

Then we examine whether differences 
in exposure to the climate news index 
help us to explain expected returns of 
green, brown, and GMB portfolios. The 
linear regression we wish to fit is the 
following:
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where MKT is the excess market return, 
SMB the small minus big (size) factor, 
HML the high minus low (value) factor, 
RMW the robust minus weak (high 
profitability) factor, CMA the conservative 
minus aggressive (low investment) factor, 
and WML the winners minus losers 
(momentum) factor. 

The left-hand side is the daily excess 
return of the portfolio under study where 
rft is the risk-free rate. We want to 
determine if, for the linear regression, the 
factor loading on the aggregated UCNIt is 
statistically significant. This will test the 
model of Pastor et al (2021) which 
predicts a strictly positive bUCNI coefficient 
for the green and GMB portfolios and a 
strictly negative bUCNI coefficient for the 
brown portfolio. We will also study the 
statistical significance of bUCNI  
coefficients.

We apply the linear regression written 
in equation (1) to the green, brown and 
GMB portfolios. Figure 5 reports the bUCNI 
coefficient for the green portfolio. These 
results have low significance and hence 
the impact of climate news on green stock 
returns is low. 

Figure 6 shows the equivalent UCNI 
beta for the brown portfolio for the 
different news sources, including the 
aggregate news source. We note that the 
betas are all negative, implying that a day 
with high unexpected negative concerns 
is, on average, always associated with a 
negative impact on the returns of brown 
stocks. Significance for the individual 
news source betas is reasonably high 
with some at 10%, 5% and one at 1% 
significance (CBERT-H). However, for 
the aggregate index, the significance 

This figure displays the UCNI for the aggregated news source over the period July 2012 to November 2021

4. UCNI aggregated indices – 30-day moving average
Attention Concern VAD-HSimilarity
VAD-S BERT-SBERT-H

0.008

0.010

0.004

0.006

0.002

0

-0.002

-0.004
2012 20142013 2015 2016 2017 2018 2019 20212020 2022

Year	 FT	 DT	 UKG	 NYT	 LAT	 Aggregate

Attention	 0.0042	 -0.001	 -0.004	 -0.0037	 -0.0002	 -0.0006
Similarity	 -0.0048	 0.0379	 0.0096	 -0.0098	 0.0381	 0.0514
Concern	 0.0027	 0.047	 -0.0021	 -0.0068	 0.0039	 0.0058
VAD-H	 0.005	 -0.0012	 -0.0037	 -0.0034	 -0.0003	 -0.0003
VAD-S	 0.0063	 -0.0017	 -0.0042	 -0.0046	 0.0004	 -0.0005
BERT-H	 0.0017	 -0.0006	 -0.0054	 -0.0039	 -0.0015	 -0.0023
BERT-S	 0.0054	 -0.0017	 -0.003	 -0.0027	 0.0016	 0.0009
CBERT-H	 0.0016	 -0.0044	 -0.0043	 -0.0095*	 0.0012	 -0.0051
CBERT-S	 0.0089*	 -0.0012	 -0.0038	 -0.0036	 -0.0007	 0.0007

Year	 FT	 DT	 UKG	 NYT	 LAT	 Aggregate

Attention	 -0.0135	 -0.0165**	 -0.0157**	 -0.0102	 -0.0139*	 -0.0295***
Similarity	 -0.0296	 -0.0807	 0.059	 -0.0522	 -0.1022**	 -0.1735*
Concern	 -0.0202*	 -0.0087	 -0.0111	 -0.0231*	 -0.0186	 -0.0435**
VAD-H	 -0.0127	 -0.0142*	 -0.0158**	 -0.0099	 -0.0144*	 -0.0296***
VAD-S	 -0.0142	 -0.0142*	 -0.0156**	 -0.0084	 -0.014*	 -0.0296***
BERT-H	 -0.0151*	 -0.0112*	 -0.0117*	 -0.0099	 -0.0097	 -0.0257**
BERT-S	 -0.0154*	 -0.0102	 -0.014**	 -0.0099	 -0.0087	 -0.0272**
CBERT-H	 -0.0116	 -0.0179***	 -0.014**	 -0.0026	 -0.016**	 -0.0311***
CBERT-S	 -0.011	 -0.0185**	 -0.016**	 -0.0145	 -0.0149*	 -0.0334***

5. UCNI beta for the green portfolio

6. UCNI beta for the brown portfolio

This figure shows the value of the corresponding UCNI beta and significance for the green portfolio by news 
source and index construction methodology. We use * to denote statistical confidence at 10%.

This figure reports the value of the corresponding UCNI beta and significance for the brown portfolio by news 
source and index construction methodology. We use *, **, *** to denote statistical confidence at 10%, 5% and 1% 
respectively.

improves substantially, and five of the 
nine indices have significance at 1%, three 
having significance at 5% amongst the 
other four. 

Figure 7 shows the UCNI beta 
coefficient for the GMB portfolio for the 
linear regression performed over the 
period from July 2012 to November 2021. 
The first observation is that the betas are 

mostly positive: unexpected negative 
climate sentiment is associated with a 
positive return due to a fall in value of the 
short position in the brown stocks. Once 
again, the climate beta statistical signifi-
cance is greatest for the aggregate indices, 
with six out of nine climate betas showing 
statistical significance at 5%.
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Portfolio performance conditional on 
the UCNI
We examine whether unexpected climate 
news innovations can help predict the 
conditional performance of brown versus 
green stocks. To do this, we study the 
average daily performance of the GMB 
portfolio and the S&P 500 index over the 
period from July 2012 to November 
2021, conditional on the level of the daily 
UCNI index. We define three different 
regimes, which we call low, medium and 
high. The low regime corresponds to days 
when the UCNI time series is below the 
first tercile, the medium regime to days 
when the UCNI time series is between 
the first and the second terciles, and the 
high regime to daily periods when the 
UCNI time series is above the second 
tercile.

Figure 8 reports the conditional 
performance of the green, brown and 
GMB portfolios with respect to UCNI 
calculated from the Aalised return of the 
GMB portfolio over the high regime is 
greater than that over the medium and 
low regime for all the methodologies 
under study. We also find that the average 
annualised return of the GMB portfolio in 
the high regime is greater than that over 
the low regime for all the methodologies 
under study. For example, choosing the 
ClimateBERT sentences index it is 13.0% 
in the high regime versus 4.4% in the low 
regime. We see that when the UCNI is in 
the high tercile, the return of the brown 
portfolio is negative for all the indices 
except the similarity index.

Conclusion and extensions
Our evidence suggests that the UCNI 
factor built on an aggregate index of 
high-quality newspapers has an explana-
tory power over the brown portfolio 
returns, and hence over GMB portfolio 
returns. The improved significance of an 

Year	 FT	 DT	 UKG	 NYT	 LAT	 Aggregate

Attention	 0.0177*	 0.0156*	 0.0117	 0.0065	 0.0136	 0.0289**
Similarity	 0.0248	 0.1187*	 -0.0494	 0.0424	 0.1403**	 0.2249*
Concern	 0.0229	 0.0134	 0.009	 0.0162	 0.0225	 0.0493**
VAD-H	 0.0177	 0.013	 0.0121	 0.0065	 0.0141	 0.0293**
VAD-S	 0.0205*	 0.0125	 0.0114	 0.0038	 0.0144	 0.0291**
BERT-H	 0.0168	 0.0106	 0.0064	 0.0059	 0.0082	 0.0235*
BERT-S	 0.0208*	 0.0085	 0.011	 0.0072	 0.0102	 0.0282**
CBERT-H	 0.0132	 0.0136	 0.0098	 -0.0069	 0.0172*	 0.026*
CBERT-S	 0.0199*	 0.0174**	 0.0122	 0.0108	 0.0141	 0.0341**

	 Green	 Brown	 GMB

Attention
Low	 21.8%	 19.4%	 2.4%
Medium	 33.3%	 25.0%	 8.2%
High	 -0.5%	 -10.4%	 9.9%
Similarity
Low	 31.2%	 24.6%	 6.6%
Medium	 3.4%	 3.5%	 -0.2%
High	 20.8%	 5.4%	 15.4%
Concern
Low	 24.7%	 21.0%	 3.7%
Medium	 25.2%	 21.8%	 3.4%
High	 5.5%	 -9.3%	 14.8%
VAD-H
Low	 22.7%	 20.3%	 2.4%
Medium	 30.2%	 23.3%	 6.9%
High	 2.5%	 -10.1%	 12.6%
VAD-S
Low	 23.1%	 19.6%	 3.5%
Medium	 30.0%	 23.2%	 6.8%
High	 2.3%	 -9.3%	 11.6%
BERT-H
Low	 28.6%	 24.6%	 4.0%
Medium	 23.0%	 15.0%	 8.1%
High	 3.8%	 -6.1%	 9.9%
BERT-S
Low	 20.4%	 19.5%	 0.9%
Medium	 34.0%	 22.2%	 11.8%
High	 1.0%	 -8.2%	 9.2%
CBERT-H
Low	 21.1%	 18.1%	 3.0%
Medium	 28.0%	 19.6%	 8.4%
High	 6.3%	 -4.2%	 10.5%
CBERT-S
Low	 27.6%	 23.2%	 4.4%
Medium	 27.1%	 22.5%	 4.5%
High	 0.7%	 -12.3%	 13.0%

7. UCNI beta for the green minus brown portfolio 8. UCNI-conditional 
annualised performance 
of green, brown and GMB 
portfolios for the aggregated 
news source

This figure displays the value of the corresponding UCNI beta and significance for the green minus brown 
portfolio by news source and index construction methodology. We use *, **, *** to denote statistical confidence at 
10%, 5% and 1% respectively.

This figure shows the conditional annualised 
performance of green, brown and GMB portfolios 
and S&P500 portfolios for the different aggregated 
news index methodology. (H) stands for headlines 
and (S) for sentences.

aggregate index over individual indices 
points to the fact that individual newspa-
pers may publish climate change articles 
even when there is no climate change 
event to report. By aggregating these 
newspapers, we reduce the importance of 
these idiosyncratic articles while retaining 
the importance of the climate articles 
which they all publish – those which 
report on actual unexpected climate news 
events.

Our findings agree with the general 
observation by Ardia et al (2022), who 
find that green firms outperform brown 
firms when there are unexpected 
increases in climate change concern. 
Unlike Ardia et al (2022), we find that this 
is not because green stocks rise in value, 
but because brown stocks fall in value. 
This result is consistent with the results 
of Bua et al (2020) and is true for simple 
attention measures which do not study 
the article sentiment. This implies that 
unexpected climate news is generally bad 
for brown assets, perhaps because brown 
firms may have more to lose from climate 
change news than green assets have to 
gain.

Furthermore, we find that, conditional 
on the level (low, medium, high) of the 
UCNI, the average return of GMB 
portfolios over the period from July 2012 
to November 2021 is always increasing 
with the level of the UCNI across all the 
different index types. This adds supports 
to the hypothesis that there is a role 
played by climate change concern on the 
longer-term performance of GMB 
portfolios.

Out of all the language models used, 
the most advanced domain-specific 
ClimateBERT model did not materially 
outperform the simpler attention-based 
model. This indicates that it is the 
number of articles, rather than their 
content, that drives climate risk aware-

ness. It may also imply that the ability of 
these state-of-the-art language models to 
extract sentiment from high quality 
newspaper articles is limited. This may be 
due to the complexity of the language 
found in these newspapers’ articles or to 
the desire of serious newspapers to be 
even-handed and moderate in tone.

There are several possible extensions 
of our paper. First, we may wish to add 
more individual news sources to the 
aggregated index to see the impact on the 
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significance of the aggregate index. 
Second, it would be of interest to explore 
aspect-based sentiment approaches such 
as Peng et al. (2020). Using such an 
approach we can ensure that the target of 
the expressed sentiment is indeed a 
climate change-related matter. It may 
then be possible to distinguish between 
green and brown targets. Third, it would 
be of considerable interest to determine 
whether the out-of-sample performance 
of the aggregate UCNI is sufficient to 
enable us to use it for portfolio hedging 
as initially proposed by Engle et al 
(2020).

The research from which this article was 
drawn was supported by Amundi.
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Climate scenarios for 
financial risk analysis

Irene Monasterolo, Research Programme Director, EDHEC-Risk Climate 
Impact Institute; Professor of Climate Finance, EDHEC Business School 

Climate scenarios have become 
an important tool for investors, 
including those in the insurance 
and reinsurance industry who 
traditionally dealt with disaster 
risks. 

To meet supervisory requests, 
many investors must now disclose 
and assess their climate-related 
financial risks using climate 
scenarios (eg, those developed 
by central banks and financial 
regulators for Greening the 
Financial System).

Our understanding of the 
characteristics of these scenarios in 
comparison to short-term scenarios 
traditionally used for stress-testing 
is still limited. 

Here we provide an overview 
of the existing scenarios, 
discussing current challenges 
and opportunities for further 
development. 

Climate-related financial risks
The assessment of climate-related 
financial risks plays an important role in 
the agenda of central banks and financial 
supervisors. In 2015, the then governor of 
the Bank of England and Financial 
Stability Board chair Mark Carney, in his 
speech to Lloyd’s of London about the 
‘tragedy of the horizons’, warned the 
financial industry about the losses that it 
could face due to the unfolding of climate 
risks (Carney [2015]). In particular, 
Carney identified three main channels 
through which climate risks could affect 
the financial industry, namely physical, 
transition and liability risks. These are 
characterised by different drivers, and 
thus by different entry points in the 
economy, and transmission channels to 
the agents in the economy, to investors 
and sovereigns:
l Physical risks refer to the impacts on 
business performance and, through that, 
on the value of firms’ financial assets and 
investors’ portfolios, induced by acute 
risks – ie, weather-related events such as 
floods and hurricanes – and chronic risks, 
eg, temperature increase, sea-level rise 
and biodiversity loss. For instance, a 

flood that critically damages a firm’s 
productive plants could impair the firm’s 
profitability and even lead to bankruptcy, 
if the affected plants are a core part of 
the firm’s business. The economic loss 
can then translate to a financial loss, 
whereby the loss in performance 
translates to a negative adjustment in the 
financial assets (eg, stocks, bonds) or an 
inability to repay outstanding loans that 
eventually affects investors directly. If 
these activities have liability cover, eg, 
insurance, then insurance (and reinsur-
ance) firms could also suffer from larger 
claims.
l Transition risks refer to the impacts on 
business performance and, through that, 
on the value of firms’ financial assets and 
investors’ portfolios, induced by a change 
in the climate policy and regulatory 
environment (eg, a late and sudden 
introduction of a carbon tax), technologi-
cal shocks and changes in consumers’ 
preferences. For instance, a late intro-
duction of a carbon tax would lead to 
larger costs and lower profits for firms 
that extract, produce or use fossil fuels 
for their business, as fossil fuel combus-
tion is a main driver of CO2 emissions.1 

http://dx.doi.org/10.2139/ssrn.2930897
http://dx.doi.org/10.2139/ssrn.2930897
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1 The later the introduction of the tax, the higher the value and thus the larger the costs for high-carbon firms. 
This is due to the fact that the more we wait to introduce the tax, the lower the carbon budget (ie., the amount of 
anthropogenic CO2 emissions that can still be introduced in the atmosphere given a certain temperature target (Allen 
et al [2009]) available coherent with the Paris Agreement target of 2°C temperature increase by 2100.
2 In 2022, after a five-year arbitration under the Energy Charter Treaty, Italy was ordered to pay €190m to 
Rockhopper Exploration, a UK oil and gas company, over a ban on near-shore drilling that prevented the opening of a 
new oilfield in the Adriatic Sea.
3 See, eg, Swiss Re: https://www.swissre.com/risk-knowledge/mitigating-climate-risk/natcat-country-profiles-
infographic.html#/
4 Recent examples are Art. 262 of the delegated Solvency II regulation; the European Supervisory Authorities’ Joint 
Regulatory Technical Standards on Environmental Social Governance (ESG) disclosure; the Securities and Exchange 
Commission (SEC) and the National Association of Insurance Commissioners (NAIC) proposals for climate risks 
disclosure. In the EU, the European Insurance and Occupational Pension Authority (EIOPA) provided an application 
guidance for climate scenarios analyses in the Own Risk and Solvency Assessment (ORSA) that considers the 
scenarios reviewed by the Intergovernmental Panel on Climate Change (IPCC) and the scenarios developed by the 
Central Banks and Financial Regulators’ Network for Greening the Financial System (NGFS) (EIOPA 2022a).
5 https://www.statista.com/statistics/510894/natural-disasters-globally-and-economic-losses/
6 UNISDR (2017).

This economic loss can then translate 
into a financial loss, whereby the loss in a 
firm’s performance translates into a 
negative adjustment to financial assets or 
an inability to repay outstanding loans, 
eventually affecting investors through 
stranded carbon assets (ie, assets whose 
value could decrease abruptly as a result 
of a phase-out of fossil fuels and high-
carbon activities). See Leaton (2011) and 
McGlade and Ekins (2015). 
l Liability risks refer to economic and 
financial actors who have experienced 
losses from the effects of climate change 
or climate policies and regulations and 
seek compensation from those they hold 
responsible. We already see examples of 
liability risks involving fossil fuel extrac-
tive companies and sovereigns that passed 
legislation aimed at preventing new fossil 
fuels explorations (see, eg, the case of 
Rockhopper Exploration against Italy2).

The analysis of climate risks is 
particularly relevant to the insurance and 
reinsurance industry. On the one hand, 
insurers and reinsurers are expected to 
provide tailored financial instruments, 
including disaster risk financing, agricul-
tural insurance, property catastrophe risk 
insurance and expertise to help govern-
ments and businesses copying with 
disasters. Yet, at the current time, the 
most catastrophic losses, including those 
caused by climate change, are not covered 
by insurance, leaving millions of house-
holds and businesses facing a large and 
widening protection gap.3 Furthermore, 
the same insurance industry has already 
highlighted that unmitigated climate 
change could lead to risks that would be 
uninsurable, in particular in the absence 
of timely policy action for mitigation (eg, 
carbon pricing) and adaptation finance. 

On the other hand, insurance and 
reinsurance firms are increasingly 
required by regulators to disclose and 

Climate risks	 Direct impact	 Indirect impact	 Spillover and cascading  
	 (entry point)	 (finance)	 impacts

Acute risks (eg, floods, hurricanes, 	 Negative: economic activities (eg, 	 Negative: investors, through	 Negative: supply chain, value
droughts), chronic risks (eg, sea-	 plants, buildings) in areas exposed	 adjustments in value of financial	 chain, trade and balance of 
level rise, biodiversity loss)	 to physical risks with poor/	 contracts, insurance liability, 	 payments, sovereign debt
	 no adaptation	 collaterals
Climate policies (eg, carbon tax)	 Negative: high-carbon and fossil fuel	 Negative for investors who are	 Negative: fossil fuels supply
environmental regulation,	 firms, due to higher production costs	 exposed to high-carbon and fossil	 chain, trad of high-carbon goods
technological shocks, preferences	 affecting activity's economic viability.	 fuel firms. Positive for investors 	 and fossil fuels, and thus
	 Positive: low-carbon firms (price	 who are exposed to low-carbon 	 balance of payments and
	 competitiveness and productivity)	 firms. Mechanism: adjustments in	 sovereign debt. 
		  value of financial assets, insurance	 Positive: low-carbon supply
			   chain, trade of low-carbon goods,
			   and thus balance of payments,
			   sovereign debt

1. Climate physical and transition risks transmission to the economy 
and investors: direct, indirect, spillover and cascading impacts

assess climate risks on both sides of the 
balance sheet, considering uncertainties 
of scenarios and different time horizons, 
and to develop climate risk management 
strategies.4 

Climate risk scenarios
The use of scenarios is not a novelty in 
stress-test exercises. However, the novelty 
of climate scenarios compared with 
traditional stress-test scenarios is the 
longer time horizon (starting from 10 
years for transition risk up to 2100 for 
physical risks). The need to consider 
longer time horizons corresponds with the 
nature of climate risks, whose greatest 
negative impacts on the economy are 
expected to play out in the mid-term as a 
consequence of poor mitigation leading to 
increases in emissions concentration in 
the atmosphere and a lack of investment 
in adaptation. Furthermore, the data and 
models to develop climate scenarios differ 
from standard scenarios. 

Physical risks
Between 2011 and 2021, economic losses 
from natural disasters globally reached 
$363bn;5 some 80% of the economic losses 
due to natural disasters are triggered by 
extreme weather and climate-related 
events.6 Disaster risk derives from the 
interaction of social and environmental 
processes, and is defined as the combina-
tion of physical hazards and the vulner-
abilities of exposed elements (Cardona et 
al [2012]). Vulnerability of households 
and business to climate risks is heteroge-
neous across countries and geographies.

Physical risks are particularly relevant 
to the insurance and reinsurance industry, 
which has long used catastrophe risk 
models to assess them. Acute physical 
climate risks (ie, weather events or 
hazards) have traditionally been analysed 
with probabilistic risk assessment models 
and catastrophe risk models used, for 
instance, by the insurance industry. These 
models translate the strength of a 
meteorological event (eg, wind) into the 
power of a hazard related to that (eg, 
hurricanes) and from that, through a 
damage function, into the economic losses 
for the activities located in areas hit by 
the hazard. 

These models build on loss and 
damage data provided by loss databases 
that contain a record of events and 
related economic losses. However, only a 
few large-scale, consistent, open-access 
disaster risks and losses databases exist. 
Many are hazard-specific (eg, the 
European Commission Joint Research 
Centre Global Database of Drought 
Events for droughts, the Global Risk Data 
Platform (UNEP-GRDP) for storms, 
floods and cyclone wind, and Fathom-
Global for flood hazard data. In addition, 
the accuracy and consistency of reporting 

https://data.jrc.ec.europa.eu/collection/id-00321
https://data.jrc.ec.europa.eu/collection/id-00321
https://wesr.unepgrid.ch/?project=MX-XVK-HPH-OGN-HVE-GGN&language=en
https://www.fathom.global/product/flood-hazard-data-maps/global-flood-map/
https://www.fathom.global/product/flood-hazard-data-maps/global-flood-map/
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across databases for the same hazard 
hitting the same country is often low, due 
to different data collection and cleaning 
procedures. Examples of open-access 
disaster risks databases include EM-DAT7  
(which provides aggregate losses at 
national level at the global scale) and 
DesInventar Sendai8 (which records 
losses at the subnational level disaggre-
gated by type of activity but mostly 
covering low-income and emerging 
countries). 

An analysis of the evolution of disaster 
risk and overall the ‘health’ of the climate 
is provided every seven years by the IPCC, 
which releases a report divided into 
chapters and working groups, the first one 
covering the physical science basis (IPCC 
[2021]). Scenarios used by the IPCC are 
characterised by four representative 
concentration pathways (RCPs), which 
consist of pathways of GHG emissions 
levels and other radiating forces (ie, the 
difference between incoming and outgoing 
energy in the Earth’s climate) that might 
occur up to 2100:
l RCP2.6 – a stringent mitigation 
scenario, which corresponds to less than 
2°C of (global average) temperature 
increase above pre-industrial levels;
l RCP4.5 and RCP6.0 – intermediate 
GHG emissions scenarios leading to a 
2.7–5°C increase;
l RCP8.5 – the high-end scenario 
characterised by high GHG emissions. 

The shared socioeconomic pathways 
(SSPs), by contrast, represent different 
narratives of socio-economic and geopo-
litical developments to explore how 
societal choices (eg, reliance on fossil 
fuels, trade agreements and barriers, 
demographic growth) would affect GHG 
emissions and, therefore, the achievement 
of the temperature targets of the Paris 
Agreement. The RCPs can be combined 
with the SSPs to analyse the role of 
climate policies that would enable us to 

7 EM-DAT – The International Disaster Database:  
www.emdat.be/
8 DesInventar Sendai, a disaster information 
management system: www.desinventar.net/
9 Note that the Bank of England’s Climate Biennial 
Exploratory Scenario (CBES) includes different 
scenarios from the EIOPA’s exercise. The CBES includes 
three scenarios exploring both transition and physical 
risks, to different degrees. The exercise considered two 
possible routes to net-zero UK greenhouse gas emissions 
by 2050: an ‘Early Action’ (EA) scenario and a ‘Late 
Action’ (LA) scenario. A third ‘No Additional Action’ 
(NAA) scenario explores the physical risks that would 
begin to materialise if governments around the world fail 
to enact policy responses to global warming.
10 The NGFS adopted three of the existing process-based 
IAMs –GCAM, MESSAGE-Globiom and REMIND-
MagPie.

mitigate and adapt to climate change, as 
in the sixth assessment report CMIP6 
global climate modelling exercise.

Transition risk
The IPCC reviews the trajectories of 
energy technologies (eg, primary energy/
coal, secondary energy/electricity/wind) 
and their uses in economic activities, 
provided by process-based integrated 
assessment models (IAMs – Weyant 
[2017]). These are scientific models that 
link components of demographics and the 
economy into one ‘integrated’ modelling 
framework along with the biosphere, the 
atmosphere and the climate. Process-
based IAMs provide scenarios of climate 
change mitigation coherent with a given 
temperature target (eg, below 2°C). They 
include a detailed representation of the 
physical system, energy systems, land-use 
change, agriculture, infrastructure, 
technology, etc. Process-based IAMs also 
provide a detailed description of the 
impacts of mitigation scenarios on the 
energy demand and emissions trajectories 
and on energy technology (fossil fuels, 
including coal, oil, gas, and renewable 
energy, including wind, solar, hydro-
power, etc). However, they have a 
relatively simple low granularity in the 
representation of the economy, composed 
of a few representative sectors whose 
investment decisions are based on either 
welfare maximisation or cost 
minimisation.

Given a certain carbon budget 
consistent with a specific temperature 
target, eg, 1.5°C or 2°C, these models 
provide the minimum-cost trajectory 
consistent with a given target and the 
cost of a global carbon tax on fossil fuel 
energy. They also show how the energy 
demand by technology, by country or 
region, should adjust (ie, increase or 
decrease) through time.

How climate scenarios help us 
understand climate risks for the 
insurance sector
The European Insurance and Occupa-
tional Pension Authority (EIOPA) and the 
Bank of England9 are recent examples of 
supervisory calls for the insurance and 
reinsurance industry to run climate 
stress-test using climate scenarios (EIOPA 
[2022b], Bank of England [2022]).

EIOPA recommended the scenarios 
developed by the NGFS in collaboration 
with the process-based IAM community 
for transition risk,10 and with the catastro-
phe risk modelling community to 
approach physical risks (using CLIMADA 
– see Bresch and Aznar-Siguan [2021]). 
These scenarios, which were launched in 
2020, are now at their third release 

(NGFS [2022]) and are continuously 
updated to keep pace with advances in the 
science of climate change, data availability 
and modelling.  

The NGFS scenarios build on the IPCC 
scenarios, characterised by SSPs and RCPs 
discussed above, and attach to that 
explicit dimension of physical and 
transition risk, depending on how climate 
policy (ie, a carbon tax) is introduced.  

In this regard, the NGFS scenarios are 
characterised by different levels of 
physical and transition risks, driven by 
scenario-specific characteristics including:
l The level of policy ambition, ie, whether 
the temperature objectives are consistent 
with the Paris agreement (1.5°C, 2.0°C) 
or higher, which would yield higher 
physical risk.
l The timing of the policy response, either 
immediate or delayed after 2030. The 
more delayed the policy action, the 
smaller the remaining carbon budget for 
any level of policy ambition, leading to 
greater transition risk, especially for high 
ambition scenarios (1.5°C).
l The level of policy coordination across 
countries and the effects of different 
carbon prices across economic sectors. 
The more variation in regional or sectoral 
policies, the greater the transition risk.
l The pace of technological change. On the 
one hand, the faster the technological 
development, the larger the economic 
disruption experienced by incumbent 
firms. On the other hand, the faster green 
technology develop, the easier it will be to 
decarbonise the economy and reach global 
climate goals.
l The availability and deployability of 
carbon sequestration and CO2 removal 
technologies (CDR), which would translate 
into less deep emissions cuts, reducing 
transition risk. 

Today’s NGFS scenarios provide a 
common reference point for understand-
ing how climate change (physical risk) and 
climate policy and technology trends 
(transition risk) could evolve given the 
potential introduction of climate policies 
(carbon tax), GHG emissions trajectories 
and other variables. These futures are 
translated into narratives of how the 
transition could occur and their implica-
tions in terms of physical and transition 
risks (NGFS [2022]). It is important to 
highlight that the NGFS scenarios are not 
forecasts of what will happen in the future 
but provide trajectories of how the energy 
demand of individual sectors, by country 
or region, should adjust (ie, increase or 
decrease) through time, to decarbonise 
the economy and achieve a pre-specified 
carbon budget objective.

In their third revision, the NGFS 
scenarios explore a set of six scenarios 
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and sub-scenarios, summarised in figure 
2:
l Orderly scenarios (OS), which assume 
that climate policies (ie, a carbon tax) are 
introduced early and become gradually 
more stringent. OS include: 1) net-zero 
2050, which aims to limit global warming 
to 1.5°C through stringent climate 
policies and innovation, reaching global 
net-zero CO2 emissions around 2050, and 
2) below 2°C, in which the stringency of 
climate policies gradually increases, giving 
a 67% chance of limiting global warming to 
below 2°C. OS are characterised by low 
transition risk and low physical risk 
because mitigation is done early.
l Disorderly scenarios (DS), which explore 
higher transition risk due to policies (ie, a 
carbon tax) being delayed or divergent 
across countries and sectors. The later the 
policy introduction, the costlier, eg, 
carbon prices are typically higher for a 
given temperature outcome if introduced 
after 2030. DS include: 1) divergent net 
zero, which reaches net zero around 2050 
but with higher costs due to divergent 
policies introduced across sectors, leading 
to a quicker phase out of oil use, and 2) 
delayed transition, which assumes that 
annual emissions do not decrease until 
2030, thus requiring a strong carbon tax 
to limit warming to below 2°C, and that 
the use of negative emissions is limited. 
DS are characterised by high transition 
risk because policies are introduced later 
and are thus costlier. However, physical 
risk is low because mitigation is eventu-
ally done.
l Hot house world scenarios (HHW), 
which assume that some climate policies 
are implemented in some jurisdictions, 
but globally efforts are insufficient to halt 
significant global warming. HHW 
scenarios include nationally determined 
contributions (NDCs), ie, all pledged 
targets even if not yet backed up by 
implemented effective policies, and 
current policies, which assume that only 
currently implemented policies are 
preserved, leading to high physical risks. 
HHW scenarios result in severe physical 
risk including irreversible impacts like 
sea-level rise.

Operationalisation of climate 
scenarios for financial risk analysis

 

Several central banks and financial 
supervisors across the world have 
conducted climate stress-tests on the 
banks and other financial institutions 
under their supervision, using the NGFS 
scenarios. These include the European 
Central Bank (eg, Alogoskoufis et al 
[2021]), Banque de France (Allen et al 
[2020]), the Austrian National Bank (Guth 
et al [2021]) and the French Regulatory 

Authority (Clerc et al [2021]). In the EU, 
banks and financial institutions such as 
insurance firms are required to use the 
NGFS scenarios in their climate stress 
tests and scenario analyses (see, eg, ECB 
[2022]). 

But what does it mean in practical 
terms to use the NGFS scenarios for 
climate stress-tests? The methodological 
framework now used by several of these 
actors to translate climate scenario 
trajectories developed by process-based 
IAMs into financial risk analysis was 
introduced by Battiston et al (2017) in the 
context of climate stress-testing of the 
financial system. 

Using NGFS scenarios for climate 
financial risk assessments consists of the 
translation of output of trajectories 
provided by the process-based IAM for 
different types of economic activities 
depending on their energy technology 
input (eg, primary energy/fossil, second-
ary energy/electricity/wind) into 
adjustments of sectoral performance (eg, 
profits). The adjustment in sectoral 
performance occurs across policy 
scenarios as a difference in the output of 
the activity when moving from a baseline 
scenario of current policy to a 2°C or to a 
1.5°C scenario (see, eg, Monasterolo, 
Zheng and Battiston [2018]). 

The adjustment in performance is 
translated into adjustments in the firm’s 
risk metrics, eg, the probability of default 
(PD) or loss given default (LGD), which is 
then translated into the adjustment of the 

valuation of financial contracts and 
securities (eg, stocks, bonds) owned by the 
investor (Battiston et al [2017]; Monas-
terolo and Battiston [2020]). 

The adjustments in financial valuation 
of contracts and securities are then used 
as an input for the adjustment in financial 
risk metrics (eg, climate VAR, climate ES) 
of the investor who holds firms’ contracts 
and securities, conditional on the climate 
scenarios (Battiston et al [2017]).

Finally, an analysis of the reverbera-
tion of losses can be conducted, usually 
using a financial network model, consider-
ing second, third and fourth round losses 
(eg, in networks of banks and investment 
fund – Roncoroni et al [2021]).

Scenario limitations and 
opportunities for development
Climate scenarios play an increasingly 
important role in financial risk assess-
ment as a result of evolving regulatory 
requirements and voluntary adoption for 
internal risk management. However, 
while scenarios have gone through several 
rounds of updates already, some limita-
tions persist.

First, current climate scenarios do not 
properly account for acute risks from 
extreme weather events (Ranger Mahul 
and Monasterolo [2022]). In the NGFS 
scenarios, acute risks from natural 
disasters are underrepresented. So far, 
physical risk scenarios have a good 
representation of hurricanes and yet 
partially of floods (at a less granular 

Source: adapted from NGFS, 2022
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resolution). However, other main sources 
of stress such as droughts, which have 
been particularly relevant for the EU in 
the past summer, and water scarcity, are 
not considered yet. Furthermore, the 
translation of hazards into economic 
losses is still done at an aggregate level. A 
more granular representation of the 
productive assets exposed to losses from 
natural disaster would contribute to a 
better assessment of economic and 
financial risks for firms owning the assets, 
and their investors (Bressan, Monasterolo 
and Battiston [2022]).

Second, the scenarios currently neglect 
the fact that climate-related risks do not 
happen in isolation, but they may 
compound with shocks of other nature, 
such as pandemics and debt crises. This is 
for instance the case of several countries 
in the African continent that were already 
affected by drought when COVID-19 
emerged. Other examples include several 
Caribbean countries that have been 
affected by tropical cyclones during the 
COVID-19 crisis; some were already 
under fiscal surveillance of the IMF, such 
as Barbados. Accounting for compound 
risk matters in designing an effective fiscal 
and financial response. Indeed, research 
shows that when climate risks compound, 
either among themselves (such as the case 
of multiform floods – Kruczkiewicz et al 
[2022]) or with other forms of risks such 
as pandemics, they can amplify the 
magnitude and duration of economic 
losses (Dunz et al [2021]). 

Third, the climate scenarios recom-
mended by the regulators focus on the 
stand-alone damages caused by climate 
change in isolation. There are, however, 
relatively rare but plausible cases of more 
than one stress event, of different natures, 
happening at the same time (eg, high 
climate damage combined with a pan-
demic or a war – as was again the case for 
African nations already hit by droughts 
and COVID-19. If this joint occurrence 
materialises, the compound damages can 
be much higher than the sum of the 
stand-alone damages (see, eg, Dunz et al 
[2011]). To the extent that these ‘joint 
catastrophes’ are considered sufficiently 
likely to warrant attention, this should 
influence the design of an effective fiscal 
and financial response. Unfortunately, the 
stand-alone nature of the climate 
scenarios recommended by the regulators 
does not enable this rare but potentially 
very severe compounding of effects to be 
taken into account. Thought should be 
given to how this shortcoming could be 
fixed – or, at the very least, scenario users 
should keep in mind these limitations 
when assessing the model outputs.

Fourth, spillover and cascading climate 

risks are still neglected by climate 
scenarios. On the one hand, research 
shows that climate transition risks are not 
constrained within a country’s borders 
(imagine the introduction of climate 
policies and regulations in a country that 
ratified the Paris Agreement). Transition 
risk can spill over from a country that 
introduced climate policies – such as 
carbon pricing – to its fossil fuel trading 
partner. The fossil fuel exporting country 
would be indirectly and negatively 
affected by the introduction of climate 
policies in its trading partner through 
lower quantity exported and prices, which 
in turn would negatively affect the balance 
of payment, fiscal revenues and sovereign 
debt (Gourdel et al [2021]). Consider for 
instance the case of China, which is a 
main importer of fossil fuels from 
Indonesia. Since China recently intro-
duced ambitious regional carbon pricing, 
its future import of coal from Indonesia 
would decline. This, in turn, would 
negatively affect exports of Indonesia’s 
mining firms, their profitability and 
contribution to Indonesia’s fiscal rev-
enues, with negative implications for 
Indonesia’s balance of payment and 
sovereign debt/GDP.

Fifth, climate scenarios are currently 
constructed without accounting for the 
role of the financial system. In particular, 
they do not account for the impact of 
investors’ expectations on the realisation 
of the scenarios themselves. This is a 
limitation to the relevance of climate 
scenarios for the analysis of climate risks 
and opportunities from climate-aligned 
portfolio rebalancing (Battiston et al 
[2021]). Indeed, if investors trust that 
countries will embrace a decarbonisation 
trajectory, eg, by introducing a carbon 
tax, they will adjust risk perception and 
reallocate capital towards low-carbon 
activities. This is because estimates of 
the value of investments in low resilience 
activities under transition scenarios are 
typically lower than in business-as-usual 
scenarios. Therefore, investors’ expecta-
tions and interplay with policy credibility 
play a main role for aligning investors’ 
incentives to the transition objectives, 
and thus for failing or making the 
mitigation.  
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