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Executive Summary

Carbon emissions and the so-called “transition

risks” they create is a concern from an investment

standpoint. Investors in infrastructure and their

regulators require better data to understand the

implications of climate risks for assets that are

highly connected to climate change.

In this paper, we develop a methodology to

estimate the carbon footprint of thousands of

airport infrastructures around the world and test

for the existence of a relationship between carbon

emissions and realised or expected returns in the

private airport investment sector.

Not all airports emissions are equal

Company emissions can be broken down into
several types defined by the GHG Protocol:
Scope 1 emissions are direct emissions from
combustion of fossil fuels; Scope 2 emissions,
the indirect emissions from purchase of
electricity, heat and cooling; and Scope 3
the indirect emissions from upstream and
downstream activities.

In the case of infrastructure companies, while
some investors have started reporting their
scope 1 and 2 emission, data remains scarce
and difficult to use for benchmarking or
analytical purposes. Meanwhile, almost no
one reports scope 3 emissions and methods
vary when they do.

We propose a consistent methodology to
assess the scopes 1, 2 and 3 of infras-
tructure companies (in this case Airports)
and implement it for several thousands
entities around the world. We use detailed
geospatial and traffic data to predict scope
1 and 2 emissions for several thousands
airports across the globe. We also derive
scope 3 emissions from highly granular
cruise, landing and take-off (LTO) data for

more than 8,000 airports globally. We find
that cruise emissions dominate LTO emission
by almost an order of magnitude for the
largest airports, showing the relevance of
reporting this source of emissions to provide
a better estimate of transition risks exposure
to investors.

We show that the results are robust and allow
computing a carbon-intensity metric: grams
of CO2 per passenger/kilometre (gCO2/pkm)
that provides a powerful benchmark to
compare individual airports.

Is there a carbon factor in infrastructure
equity returns?

We then analyse the link between carbon
emissions and financial performance: we
build a so-called factor replicating portfolio
of high minus low carbon intensity using
monthly price return data for private airports
provided by infraMetrics® and attempt to
determine whether this potential ‘factor’ has
predictive power in terms of airports equity
returns.

We show that whether we take Scopes 1&2
or Scope 3 into account, the carbon intensity
of airports is not a significant determinant
of their realised financial performance once
traditional pricing factors such as size or
profit have been taken into account. We also
find that expected returns are not driven
by the different degrees of carbon intensity
whether they are measured in terms of
Scopes 1 and 2 or Scope 3.

We conclude that transition risk, as proxied
by the carbon intensity of airports, is not
integrated in asset prices today.
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1. Introduction

In this paper, we develop a methodology
to estimate the carbon footprint of airport
infrastructure around the world (scopes 1,
2 and 3) and test for the existence of a
relationship between carbon emissions and
realised or expected returns in the private
airport investment sector.

In what follows, we consider why the
issue of carbon emissions and the so-called
“transition risks” they create is a concern from
an investment standpoint and the relevance
of this issue in the case of airport infras-
tructure.

Transition risks are defined by the G20’s Task
Force on Climate-related Financial Disclosure
(TCFD) as the combination of policy and
legal, technology, market, and reputation
risks to which companies are exposed due
to climate change. These risks relate either
directly or indirectly to carbon and other
greenhouse gases (GHG) emissions, and stand
at the center of new regulations developed by
major institutions such as the Securities and
Exchange Commission (SEC), the European
Sustainability Reporting Standards (ESRS),
or the International Sustainability Standards
Board (ISSB).

Company emissions, namely their carbon
footprint, can be broken down into several
types defined by the GHG Protocol. These
are called Scope 1: the direct emissions
from combustion of fossil fuels; Scope 2:
the indirect emissions from purchase of
electricity, heat and cooling; and Scope
3: the indirect emissions from upstream
and downstream activities. These different
sources of emissions are reported by
companies in sustainability reports and
their estimate allows the assessment of the
short-term exposure to transition risks.

Airports, the infrastructures supporting air
transports and classified as IC601010 under
EDHECinfra’s Taxonomy (TICCS®), have seen
a fast increase in activities over the last
few decades. Overall, the aviation sector
is responsible for around 2.5% of global
CO2 emissions. Airports’ activities, highly
regulated and homogeneous across countries
thanks to their international nature, are now
seriously exposed to transition risks. The
Airports Council International (ACI) and
International Civil Aviation Organization
(ICAO) have already expressed their inten-
tions to transform airport activities and reach
a net-zero model by 2050. However, most
of the forty thousand and more airports in
activity in the world remain far from the
objective.

In this context of opportunities and risks,
infrastructure investors are increasingly
aware and concerned with the necessity
of assessing the carbon footprint of their
owned assets, including airports, and to
take into consideration carbon emissions
in their decisions. Nevertheless, the current
ESG data available to investors is insufficient
to satisfy this demand. For this reason, a
global estimate of airports emissions, with
a uniform treatment of data and highest
possible accuracy, is of real interest in order
to compare the value of these assets, under-
stand their risk exposure, and decarbonize
portfolios. The goal of this publication is to
present a methodology that responds to this
demand and estimates emission metrics for
airports with a global coverage, showing
accurate and robust predictions, and easily
applicable to other infrastructure sectors.
The year of focus is 2019, as it represents a
normal (”pre-covid”) year of activity, but can
be translated to any recent years where data
is available.
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We first present models for scope 1 and
2 emissions of airports based on a variety
of factors suggested by the literature.
These include airport characteristics, opera-
tions and climate data, and they serve as
independent variables for a linear regression
of reported emissions. Several steps are
carried out to select the best combination
of explanatory variables. Once models are
trained, they are used to establish predictions
on non-reporting airports with the same set
of independent variables, thus filling the void
of currently unavailable data.

The model for scope 1 emissions shows
promising results, explaining about half the
variability observed in reported data. We
find that the most relevant factors are
temperature variations and airport geolo-
cated characteristics such as the size of
the aerodrome and terminals. The predic-
tions also appear consistent with what we
would expect for smaller airports. A similar
model is employed for scope 2 emissions, but
shows less predictability. Despite this fact,
the explanatory variables appear to make
sense, showing in particular the importance
of airport terminal characteristics as well as
number of passengers. Finally, a model of
scope 1+2 is derived as well and shows results
complementary to the two others.

Based on these models, we are able to
predict scope 1 emissions formore than 3,000
airports, scope 2 emissions and scope 1+2
emissions for more than 1,700 airports across
the globe. These predictions are discussed in
details and prove their relevance from the
insight that they already provide on airport
activities and emissions. They also allow the
derivation of intensity metrics of potential
interest regarding future regulatory frame-
works and investment decisions.

In a second part of the publication, we
present models developed for scope 3
emissions. We consider two dominant
sources of emissions coming from aircraft

cruises (distance-based model), plus the
landing and take-off (LTO) cycle (time-based
model) which is the mainly reported source
of scope 3. The models differ from scope 1
and 2 models in many ways. Indeed, contrary
to the statistical approach of regression
against reported data, the method employed
here is predictive in its design. Several
reasons justify this difference. First, less
airports report scope 3 emissions than scope
1 and 2, second, precise data on air traffic
can easily be found.

We obtain scope 3 emissions from cruise and
LTO for more than 8,000 airports globally.
We find that cruise emissions dominate LTO
emission by almost an order of magnitude for
the largest airports, showing the relevance of
reporting this source of emissions to provide
a better estimate of transition risks exposure
to investors. Several metrics are derived and
it is easy to see that these models can be
employed for a large variety of applications
towards sustainable investments. Despite the
lack of data to assess the quality of the
predictions accurately, the results of the
models appear to show very promising levels
of reliability.

With carbon disclosures and alternative data
taking a growing role in investors’ decisions,
these types of models are of increasing
relevance for assessing the sustainability of
assets and their exposure to different types
of risks, including transition risks. Due to the
current lack of regulations, though numerous
indications show that they will soon be
enforced, it is still a challenge to know
which metric would turn out to be the most
relevant for investors. In addition, data is still
lacking, and this explains the current limita-
tions in modelling, as illustrated by our scope
2 emissions model.

Nevertheless, the growth in data access and
increase in data accuracy gives high confi-
dence in the establishment of even more
precise models and accurate predictions. Our
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generated predictions for scope 1, 2 and 3
emissions far exceed the current available
data on airport emissions, and this study
constitute a proof of the numerous benefits
that large datasets can bring for the evalu-
ation of companies and assets, their use in
sustainability assessment, and the ability to
better inform investors in their decisions.

Finally, we analyse the link between carbon
emissions and financial performance: we
build a so-called factor replicating portfolio
of high minus low carbon intensity using
monthly price return data and attempt to
determine whether this ‘factor’ has predictive
power in terms of airports equity returns.

We show that whether we take Scopes 1&2
or Scope 3 into account, the carbon intensity
of airports is not a significant determinant
of their realised financial performance once
traditional pricing factors such as size or
profit have been taken into account.

We also find that expected returns are not
driven by the different degrees of carbon
intensity whether they are measured in terms
of Scopes 1&2 or Scope 3. We conclude
that transition risk, as proxied by the carbon
intensity of airports, is not integrated in asset
prices today.

The rest of this publication will address the
topic of airports emissions as follows. In
Chap. 3 the data processing and regression
models for scope 1 and 2 emissions are
described in details. Chap. 4 describes the
models for scope 3 emissions, following a
similar structure in the description but with
a fundamentally different type of modelling
involved. In Chap. 5, results of analysis are
presented and discussed in great details,
presenting results for scope 1, 2 and 3models,
interpreting and confronting their predic-
tions. Chap. 6 then analyses the relationship
between realised and expected returns in
private airports and their level of emissions.
Chap. 7 concludes.
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2. Transition Risks and Transport
Infrastructures

2.1 Transition risks evaluation for

infrastructure investors

The most recent report from the Intergov-
ernmental Panel on Climate Change (IPCC)
addressed the current and future impacts
of climate change and considered possible
adaptation measures to avoid losses on
natural and human systems. The current
level of global warming is around 1˚C
above pre-industrial period (1880-1900), and
projections suggest that a 1.5˚C warming
could be reached before 2040. The IPCC
warns that a warming higher than this
level would ”cause unavoidable increases
in multiple climate hazards and present
multiple risks to ecosystems and humans”,
and limiting these emissions to that level
would ”substantially reduce projected losses
and damages related to climate change” (Cf.
Pörtner et al. (2022); Reisinger et al. (2020)).
The IPCC’s last report mentions concerns
regarding infrastructures multiple times. For
this reason, and others developed in this
section, reduction of emissions is very likely to
take a growing importance in infrastructure
investors’ decisions.

2.1.1 Defining transition risks, carbon

footprint and scope emissions

Transition risks, or more precisely climate-
related transition risks, are given a precise
definition from the G20’s Task Force on
Climate-related Financial Disclosures (TCFD).
According to TCFD (2021, 2017), transition
risks are made up of 4 components:

l Policy and Legal risk: relates to litigation
risk and the emergence of new regulations
put in place to tackle climate change.

l Technology risk: relates to new
technologies and innovations necessary

for reducing carbon emissions.

l Market risk: relates to shifts in supply
and demand curves due to changes in
activities in relation with climate change.

l Reputation risk: relates to the public
sentiment towards a brand value from
climate change considerations.

The 2° Investing Initiative (Cf. Thomä
et al. (2020)) defines a simpler and unique
transition risk as the ”financial risk associated
with the transition to a lower economy”,
but accounts for similar components in its
description of relevant modelling parameters.
Consequently, one can see transition risks
as a set of risks emerging from exposure to
climate change, as seen through the prism of
several socio-economic and financial actors.

How can we measure such risks? The
assumption employed in this work is that
transition risks are directly represented by
GHG emission metrics such as levels of
emissions in tons of CO2 equivalent (tCO2e),
namely the carbon footprint of assets owned
by companies. This carbon footprint can
be assessed through direct and indirect
emissions measured at a certain frequency
(e.g. yearly); intensity metrics representing
emissions relative to certain amounts of
goods, services, or operational character-
istics; and their evolution or projections
over time. This assumption makes intuitive
sense given the components of transition
risks presented above, and is supported by
literature. Indeed, this approach is taken
by Bolton and Kacperczyk (2021b,a) where
it is shown that the carbon risk premium
of listed companies relate primarily to
levels of emissions as a reflection of long-
term exposure to transition risks. Monas-
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terolo and de Angelis (2020) shows that
investors have started to integrate carbon
emissions in their considerations after the
Paris Agreement at COP21 in 2015, but
Reboredo and Ugolini (2022) states that
transition risks have only been partially
integrated in market prices. These studies,
among numerous others, confirm that carbon
footprints and their time evolution play
a significant role in the assessment of
transition risks. However, and as described in
Thomä et al. (2020), transition risk scenarios
and their associated models must rely on
a much larger set of metrics reflecting
the complexity and uncertainties related to
future policies, markets, new technologies
and macro-economic trends. In this sense,
the use of carbon footprints is a highly
reliable but narrow assessment of short-term
transition risk, as opposed to lower-accuracy
but broad long-term projection models.

Following this definition, we understand
that measuring GHG emissions is of
primary importance in order to evaluate
the associated carbon footprints. Following
the GHG Protocol Corporate Standard (Cf.
WBCSD (2004)), it is common to categorise
emissions in 3 different scopes:

l Scope 1: direct emissions, including
emissions from facilities and vehicles
(usually from the combustion of fossil
energies);

l Scope 2: indirect emissions from
purchased electricity, steam, heating
or cooling, ventilation and lighting;

l Scope 3: indirect emissions from
other sources, including upstream and
downstream activities (e.g. purchased
goods and services, transportation
and distribution, employees commute,
generated waste, etc.).

The GHG Protocol focuses on 7 types of
GHGs, and these GHGs are usually emitted in
smaller quantities than CO2. However, their

global warming potential (GWP) 1 is much
higher. These gases are the following:

l CO2: carbon dioxide (GWP = 1 by
definition),

l CH4: methane (GWP ≃ 28),

l N2O: nitrous oxide (GWP ≃ 265),

l HFCs: hydro-fluorocarbons (GWP ≃ 4-
12,400),

l PCFs: per-fluorocarbons (GWP ≃ 6,630-
11,100),

l NF3: nitrogen trifluoride (GWP ≃ 16,100),

l SF6: hexa-fluoride (GWP ≃ 23,500).

(Source of GWP values: IPCC, AR5). Water
vapour is also emitted in addition to these
gases, e.g. when an aircraft generates
contrails and clouds, but the GWP of water
vapour is low considering its short lifetime
into the atmosphere. In general, all the
different impacts of GHGs are gathered
together by the use of GWP in order to
report their impact under the same unit,
so-called CO2-equivalent (CO2e) emissions.

As illustrated in Fig. 1, the general functioning
of infrastructures can be described through
a physical approach. Indeed, an infras-
tructure can in general be seen as a
set of geo-located physical assets which
operate individually or in association, trans-
forming primary resources through specific
operations in order to provide goods or
services to human users and which, by this
process, generate certain amounts of wastes.
It is precisely this generation of wastes
that exposes infrastructures to sustainability-
related risks, and since no system is perfect
all infrastructures possess some level of
exposure. Nevertheless, different natures of
wastes often leads to difficult comparisons.
As an example, nuclear energy production
emits very low amounts of carbon during
operations, but the generation of nuclear

1 - The GWP corresponds to the amount of energy absorbed by 1
ton of a gas over a period of time, usually taken as 100 years, relative
to the same evaluation for CO2 . GWP is a function of radiative
efficiency and lifetime in the atmosphere. See e.g. IPPC for more
details.
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wastes is often a major source of safety
concerns.

2.1.2 Current and future regulations

In order to limit future emissions and
mitigate climate related risks on societies and
economies, institutions around the world are
putting in place new regulations and setting
new reporting standards. These standards
belong to the general concept of Environ-
mental, Social and corporate Governance
(ESG) which is increasingly more relevant
to businesses and investors. Consequently,
the regulations are evolving in parallel to
numerous ESG schemes intended to provide
ratings of companies, including the coverage
of infrastructure assets as described in Blanc-
Brude and Manocha (2021). The regulations
and ESG schemes are still actively developed
and are expected to converge with time as
knowledge in the field increases. Despite the
need for more consistency, it is the amount
of research and data being produced which
testifies about the current rapid develop-
ments in the ESG landscape.

The TCFD standards, already mentioned above
and established in 2017, have for example
been used as a reference for disclosure
regulation in the UK2. As another example,
the Securities and Exchange Commission
(SEC) recently proposed a set of rules
for climate-related risks disclosure in the
reports of registered companies, including
estimates of GHG emissions and climate-
related financial metrics (Cf. Securities and
Commission (2022)). Similarly, the European
Financial Reporting Advisory Group (EFRAG)
has developed the European Sustainability
Reporting Standards (ESRS) (Cf. PTF-ESRS
(2022)). At roughly the same time, the
International Sustainability Standards Board
(ISSB) published the IFRS’s Sustainability
Disclosure Standard (Cf. (ISSB) (2022a)).
Though still in construction, these standards
are undoubtedly going to advance the

2 - FT.com

amount of disclosure in place, improve the
reliability of reported data, and improve the
convergence towards more consistency in
reporting (Cf. also Persefoni (2022)).

In parallel with better reporting standards,
governments are implementing actions to
decarbonize their economies. One method
that appears to be efficient for this goal
is carbon pricing, either through emission
trading systems (ETS), or through carbon
taxes3. With ETSs, the total amount of
emissions is fixed and businesses emitting
more than their allowed permits have to buy
extra permits from low emitters, creating
a market of emissions and effectively
making a fluctuating carbon price. With
carbon taxes, governments fix the price of
carbon emissions and give an incentive for
companies to reduce their emissions in order
to pay less taxes. These two approaches in
carbon reduction are under consideration
in multiple countries4 and their impact on
the long run will directly depend on the
price of carbon they create. However, these
implementations and the associated risks for
large emitters are likely to grow.

As described by TCFD (Cf. TCFD Board
et al. (2017)), climate change is not only
a source of risk, but also of opportunities
for companies. These opportunities include
a better management of resources across
production and distribution of goods and
services, reducing costs and increasing
production. It also includes the development
and usage of superior technologies, as
well as cleaner sources of energy, reducing
exposure to fossil fuel prices and improving
their reputation. Opportunities aiming at
attracting new customers and new markets
will develop as consumers and infrastructure
users shift their preferences due to climate
change considerations, increasing their
revenues. These adaptation measures can
be a motivation for businesses to improve

3 - c2es
4 - World Bank
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Figure 1: Physical description of an infrastructure

InfrastructureResources Goods / Services
Supplies Provides

Wastes + Emissions

resilience and evolve towards new future
demands.

2.1.3 ESG and investors preferences

Since ESG regulations are still in devel-
opment, the main driver of interest from
investors towards ESG data relates to risk
management. Numerous investors have
growing concerns towards the impact of
companies and assets on climate change,
and the ”double-materiality” aspect of
their activities implies that non-material
factors today (such as carbon emissions),
could become material in the future (either
through regulations or environmental factors
impacting activities and revenues). In this
context, carbon footprints are primordial to
consider due to their direct link with global
warming. This necessity of risk management
is also becoming material at the portfolio
level through frameworks like the Paris
Aligned Investment Initiative (PAII) and the
Net-Zero Asset Owner Alliance (NZAOA), as
described in Ducoulombier (2022).

In addition, other types of risks related to
ESG issues matter to investors (Cf. Blanc-
Brude et al. (2022)). This is the case of
physical risks which cover different types of
hazards such as storms, floods, droughts, wild
fires, extreme temperatures, earthquakes, etc.
Some of these hazards, seen either as chronic
or acute risks, have a strong dependence
on global warming and could significantly
impact business activities as well as cause
physical damage to assets, with potential
losses involving repair, adaptation, lifespan,
or insurance premium.

Furthermore, businesses undeniably value
their reputation. As certain as it is that
climate change will have an impact on
businesses, it will also have an impact on
societies. Hence, it is fair to say that social
acceptability risks will also play a role in
investors’ future considerations of transition
risks, with a growing number of citizen asking
for companies and infrastructures to improve
on their emissions. These potential social
concerns will, in return, be accompanied by
new regulations as well as potential litiga-
tions, increasing the pressure not only to do
well, but also to do good for the planet.

2.2 Transports infrastructures, the case

of airports

We will briefly present airports in this
section, providing a short description of their
structure. One should keep in mind that
airports come in multiple sizes and shapes,
with the largest airports employing several
tenth of thousands people and serving tenth
of millions passengers per year, while the
smallest ones can employ as little as few
dozens of people and serve only a few
thousands of passengers a year.

2.2.1 TICCS taxonomy and transports

As any other infrastructure, airports are
classified under the TICCS taxonomy (Cf.
Documentation (2022)). They fall under the
Industrial Asset Subclass code IC601010, and
they belong to airport companies (Indus-
trial Class code IC6010), itself belonging
to the Industrial Superclass of Transport
(code IC60). Other classes in this super-
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class include Car Park Companies (IC6020),
Port Companies (IC6030), Road Companies
(IC6040) and Urban Commuter Companies
(IC6060). Airport companies are often the
owners of a single airport which they operate.
However, there exists also a significant
number of airport companies owning, in part
or fully, a larger number of airports.

In 2020, although significantly impacted
by the Covid-19 pandemic, aviation still
represented about 8% of global emissions
from transports5. Hence, the aviation sector
amounts for about one tenth of transport
emissions, while the transport sector repre-
sented about 7.2 Gt CO2 in 2020 (falling by
10% from the previous year, due to Covid)6.
When taking the main GHGs into account,
the transport sector represents more than
15% of global emissions, making the contri-
bution of aviation around 2.5% of the total
globally, closely followed by shipping, but
smaller than road transport of passengers and
freight (about 6 times larger than the airport
contribution).

2.2.2 Airports structure and operations

As airports constitute the infrastructure
connecting aircraft vehicles with their
passengers (or cargo) to provide air transport
services, their structure is mainly determined
by this mandate. Airports are thus made of
an aerodrome on which is built one or several
runways for aircraft fleets to land and take-
off. Aircraft are parked at aprons and connect
to the runways through taxiways. Aprons are
usually situated close to airport terminals to
easily board or disembark passengers. Airport
terminal buildings welcome passengers
and offer a space to operate the necessary
security checks, baggage handling and
waiting. Airports operate on tight schedules,
so airport terminals need to be of an
important size to provide services to a large
number of users. Since airports are usually
located at a distance far enough from cities

5 - Statista
6 - IEA

to afford their large land usage while close
enough to remain attractive to passengers,
they also have infrastructures for users to
reach them, including often bus stations,
train stations as well as road accesses and
parking lots.

The airport operations are thus shaped by
their two main actors: airline companies and
passengers. The first actor requires airports
to handle aircraft schedules properly, guiding
aircraft during their approach until they
reach the arrival gate, and equivalent proce-
dures for take-off. They also provide all
the necessary support such as fire fighters,
accompanying passengers, loading and
unloading freight, deicing, or dealing with
rough climate conditions. On the passenger
side, airports operate the terminal building
and numerous other buildings related to
passengers access as well as necessary
activities such as waste management, heat
production and in some cases on-site energy
production. Let us add that passenger
activities represented about 80% of airport
activities in 2018, hence cargo operations
only remained close to 20%.

2.2.3 Regulations, initiatives and reported

metrics

The IFRS’s Sustainability Disclosure Standard
(Cf. (ISSB) (2022a)) contains a selection
of industry-based disclosure requirements
in its Volume B, which include Infras-
tructure as well as Transportation categories.
In the transportation category are present
both ”Air Freight & Logistics” (Cf. (ISSB)
(2022b)) and ”Airlines” (Cf. (ISSB) (2022c))
which are closely associated to airport activ-
ities. This first document requires air freight
companies to report scope 1 emissions,
fuel consumption as well as the intensity
metric of revenue ton kilometers (RTK). The
second document for airlines requires the
reporting of identical metrics, as well as
additional metrics: available seat kilometers
(ASK), passenger load factor, and revenue
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passenger kilometers (RPK), average age of
fleet and number of departures. Hence,
noticing the closeness with airport activities,
one can argue that these standards may also
define precise metrics for airports in a near
future.

Despite the lack of regulatory framework
on sustainability disclosure of airports,
numerous actors among them have already
taken the lead towards carbon transition.
Indeed, on June 2021 the Airports Council
International (ACI), which defines standards
and policies for airports as well as represents
nearly 2,000 of them around the globe, has
pledged that its member airports commit to
reach net zero carbon emissions by 20507,
and published a plan to show the feasibility
of this goal (Cf. ACI (2021)). Furthermore, the
Airport Carbon Accreditation (ACA), created
by ACI EUROPE in 2009, accompanies more
than 400 airports in this transition through
6 level of certification, with probably more
soon to join the program. Similar pathways
have been acknowledged by the Interna-
tional Air Transport Association8, and the
International Civil Aviation Organization
(ICAO) has defined the Carbon Offsetting and
Reduction Scheme for International Aviation
(CORSIA) 9.

In addition to the initiatives of airport
groups, individual airports have also taken
preventive measures to protect themselves
from transition risks. As an example, Sydney
Airport (SYD) has published regular responses
to TCFD (Cf. e.g. Sydney Airport Limited
(2021)), defining its carbon reduction and
physical risk mitigation strategies, and
committed to net zero emissions (scope 1
and 2) by 2030. The Groupe ADP, owner
of Charles De Gaulle (CDG) airport and
others, has committed to carbon neutrality
by 203010. In addition to official commit-
ments, airports also show growing efforts in

7 - ACI
8 - IATA
9 - ICAO

10 - Paris Airport

reporting their emissions with great details.
As an example, one can cite Heathrow Airport
(LHR) which, to the authors’ knowledge, is
the first one to report departing cruise
emissions in its scope 3 inventory of carbon
emissions. These examples, among numerous
others, show the intention of the airport
sector to tackle emissions and build more
efficient and resilient infrastructures.

2.3 Size of emissions, metrics and

limitations of data

Despite the ambitions of numerous airports
to assess their emissions and reach a
lower level of pollution, the large number
of airports in activity around the globe
(estimated at more than 41,000) unavoidably
makes their total contribution to global
warming non negligible and likely to grow
even further.

2.3.1 Airport emissions

In 2019, the global emissions of the aviation
sector reached an estimated 920 million tons
of CO2 (Mt CO2)11, with a global passenger
count of 4.56 billion. In 2018, the aviation
contribution was about 2.5% of the total 36.7
billion tons of emitted CO2 that year12, and
estimates including the effect of contrails
and other GHGs indicate a contribution of
about 3.5% to global warming (Cf. Lee et al.
(2021)). It is estimated that there is around
1,500 airlines operating a fleet of more than
33,000 commercial aircraft to service the
most important airports. As a consequence,
the aviation sector represents nearly 10% of
transport emissions globally.

Among the different countries where
passenger employ air transports the most
are the United States (179 Mt CO2, 23%
of airports emissions), the European Union
(152 Mt CO2, 19%) and China (103 Mt CO2,
13%)13. The use of air transport correlates

11 - EESI
12 - Statista
13 - ICCT
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with consumer habits, with large countries
more likely to develop domestic air traffic.
Their level of economic development is also
an important component. For example, China
currently has about 250 civil airports while
the U.S. has close to 20,000, with around
5,000 public airports, but China’s passenger
market is rapidly growing and predicted to
outperform the U.S. around 203014. As for
the breakdown of commercial operations,
the bulk of it comes from passenger travels
(80-85% depending on estimates) and the
rest (15-20%) being represented by freight.

The aviation sector has invested a lot of
efforts to reduce the amount of emissions per
passenger over the last decades. On average,
it is estimated that in 2019 aviation emitted
about 90 grams of CO2 per passenger-
kilometer (pkm). Obviously, this number
significantly increases for premium class
passengers, where it can exceed 350 grams
CO2 pkm. It also varies depending on types of
aircraft, engine, employed fuel, seat configu-
rations and occupancy of aircraft (for which
the global average is around 83%). The steady
increase of commercial aviation emissions
over the last decades15, only recently put on
hold because of the Covid-19 pandemic, thus
appears to be driven by a high user demand
that reduction of emissions per passenger
have not been able to compensate.

Despite the low number of airports publicly
reporting their emissions, an analysis of
their sustainability reports and Corporate
Social Responsibility (CSR) reports allows a
certain level of understanding of airports’
main sources of emissions. Scope 1 and 2
emissions are reported in a more consistent
manner than scope 3, and this relates to their
better coverage in terms of guidance and
regulatory frameworks. As these emissions
directly depend on airport activities, they
are also easier for airport owners to access,
process and report. As for scope 3 emissions,

14 - ACI
15 - Statista

the airport sector still lacks a consensus
on which sources to report. Most airports
publishing reports take into consideration the
emissions from the LTO cycle as well as some
emissions related to ground vehicles. Cruise
emissions, which are believed to dominate
scope 3 emissions, are on the other hand
almost never reported.

2.3.2 Reported metrics

As mentioned earlier, no regulatory
framework at the moment imposes specific
metrics to airports in their disclosures.
However, one can define metrics that
represent accurately the important sources
of emissions of airports based on the metrics
which are already reported, and metrics
which are likely to be imposed by regulators.
The most obvious metrics are scope 1
and 2 emissions, as they relate directly to
airport emissions and consumption. Scope
3 emissions are also of great significance
considering that they are much larger than
scope 1 and 2. However, few airports still
report these sources of emissions, in part
due to their diversity of sources. We should
add here that airports generate and monitor
numerous kind of pollutants in their vicinity,
such as nitrogen dioxide (NO2), carbon
monoxide (CO), nitric oxide (NO), particular
matter such as PM2.5 and black carbon, or
ultra fine particles. One can thus think of
having metrics for each type of GHG.

As for intensity metrics, one can think of
different quantities based on airport opera-
tions. An example is to assess airports from
their emissions relative to their revenues to
account for their profits, or with respect
to their number of passengers (pax) or
passenger-kilometer (pkm) to evaluate their
efficiency in terms of services. Another similar
quantity can be the estimate of emissions
per number of flights in order to test the
capacity of airports. Finally, some metrics
specific to the source of emissions can be
derived, in scope 1 and scope 2, with scope
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2 distinguishing already from location-based
and market-based estimates, as well as scope
3 for which even more sources can be tested.

2.3.3 ESG data providers and limitations

Due to their private ownership nature,
infrastructure assets and their operating
companies often lack a good coverage on
data. This fact applies to airports as well. As a
consequence, only few data vendors provide
ESG data on airports, and the number of
assets under consideration is in the order
of tenth. The current availability of data
is thus unsatisfactory when it comes to
building systematic studies. As an example,
leaders in ESG data such as the Carbon
Disclosure Project (CDG)16, Sustainalytics17
or Arabesque18 put together seem to provide
data on less than 30 individual airports and
contain about 13 airport groups representing
around 240 airports. However, most of these
airports within groups do not disclose their
individual emissions, which makes them
unexploitable. In fact, the limitation of ESG
data is not only affecting infrastructure
companies, but numerous activity sectors (Cf.
e.g. Ducoulombier (2021)).

We will show in this publication that models
of emissions can be established based on
substantial efforts to retrieve more data from
reporting airports, and providing enough
confidence to use thesemodels on a larger set
of assets. This approach not only improves the
understanding of factors influencing airport
emissions, but also opens the door to the
prediction of emissions on a large amount
of non-reporting assets. Hence, this approach
shifts the perspective from small-data to big-
data analysis, and it is likely to have an impact
on how investors will make their investment
decisions in a context where comparison of
assets with respect to each other becomes
available.

16 - CDP
17 - Sustainalytics
18 - Arabesque

As always the case when designing models,
the right level of precision needs to be
assessed based on the availability of data,
its granularity, limiting assumptions and the
desired level of description. For example, it
is inefficient and time-consuming to develop
a detailed description of some features in a
model when limiting factors impose an over-
simplification in another component of that
model. Similarly, and because airports possess
numerous intrinsic differences (such as those
emerging from their design, their countries,
the decisions of their operators, etc.), there
exists a trade-off between the global reach
of a model and its precision. As will later be
shown, this trade-off exists in the academic
literature as well, with authors e.g. studying
a small number of airport terminals or cruise
flights in great details, or a larger number
of them with possibly larger deviations on
individual cases.

Having mentioned these trade-offs, it is
important to mention that our approach
intends to be global in order to tackle
the problem of low statistics. Hence, this
design choice enforces a lower level of
accuracy unless more data becomes available,
implying also potential deviations between
predictions and reality for some individual
cases. This will be true for scope 1 and 2
modes, where for example the inaccuracy
of terminals data may lead to large varia-
tions for certain airports, and for scope 3
emissions where a given flight may have
characteristics deviating significantly from
our estimate. However, if the models are not
biased one should expect the errors to cancel
out when aggregating predictions (e.g. by
adding emission of a large number of flights).

In addition, let us also mention that several
GHGs can be modelled to describe the
total emissions of airports. However, this
complexity also has a cost to consider. Since
the effects of GHGs other than CO2 mostly
come from cruise emissions and are difficult
to predict (Cf. Penner et al. (1999)), we have
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neglected the presence of other GHGs than
CO2 in our scope 3 models. As for scope 1 and
2, multiple GHGs are indirectly included from
the fact that reported emissions of airports
used in our model dataset are consistently
expressed in CO2-equivalent units. Hence,
when mentioning CO2 in our scope 1 and 2
models, one should in fact understand that it
is CO2-equivalent emissions which are being
considered.
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3. Modelling scope 1 and 2 emissions

This section is devoted to the modelling
of scope 1 and scope 2 emissions of
airport infrastructures. Scope 1 emissions are
composed of direct emissions from mobile
combustion, fugitive and process emissions.
As for scope 2, they are made of indirect
emissions from purchased electricity, steam,
heat and cooling. Due to the commonality
of sources composing scope 1 and scope 2
emissions, it is expected that the method
described here will translate to other types
of infrastructures as well, with possible varia-
tions in the quality of predictions depending
on the predictability of the regressors at play.

3.1 Literature review and approach

The airport sector is not exempt of research
studies addressing its emissions, and these
studies bring an important support when it
comes to evaluate scope 1 and 2 emissions.

3.1.1 Airport operations

Airports are infrastructures providing air
transport services around the globe. From
their nature, most operations at airports
directly or indirectly relate to the provision
of this service to users. Hence runways,
taxiways, aprons and control towers make
the landing and take-off of aircraft possible.
On the other hand, access services, parking
lots, water/waste management systems
and terminal buildings provide services to
users before and after their flights. Since
an aircraft require strict safety measures
and numerous support operations (refueling,
deicing, loading passengers and cargo, etc.),
and because of the international nature of
this transportation mean, airports of similar
capacity share common features both in size,
physical characteristics as well as operations.

As the rest of the transport sector, the opera-
tions at airports rely heavily on fossil fuels
combustion. We can distinguish 4 types of
combustion:

l stationary combustion which uses natural
gas, liquefied petroleum gas (LPG), oil
or coal, to serve in boilers and furnaces
providing heat for buildings;

l mobile combustion where petrol and diesel
is used to operate cars and trucks;

l fugitive emissions which come from leaks
in GHGs such as refrigerant gases;

l process emissions related to the production
of cement and construction in general.

The different sources of direct emissions
mentioned above compose scope 1 emissions
and take place at airports through the use
of heavy heating, ventilation and air condi-
tioning (HVAC) systems, operated vehicles
such as ground support equipment1 (when
owned by the airport), and the use of
refrigerants. As some of these operations
are gradually transitioned from fuel-based
to electricity-based systems and vehicles,
these direct emissions are likely to decrease
(depending on airport policies) and be
partially transferred into scope 2 emissions.

3.1.2 Airport terminals

Airport terminals are known to be some
of the most energy-intensive buildings in
the world (Cf. e.g. Ahn and Cho (2015)),
especially due to the enormous volumes
of air for which temperature needs to be
accurately controlled. They also represent a
significant part of the electric consumption
of airports, sometimes reaching up to 80% of
the airport consumption (Cf. e.g. Ortega Alba
and Manana (2016)). But airport terminals
have benefited from a good attention in

1 - The Points Guy
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academic literature, with several in-depth
studies analysing their consumption, and
hence giving useful guidelines to estimate
their consumption.

Some studies on airport terminal buildings
(ATBs) focus on single terminals with
high-frequency and detailed monitoring of
consumption. For example, Kang et al. (2017)
shows the importance of time of the day
or week and outside temperature to predict
terminal consumption, but it does not see
a strong correlation with the number of
flights. Xianliang et al. (2021), on the other
hand, finds that the energy consumption
of Nanning Airport Terminal 2 mainly
depends on passenger flow, meteorological
parameters and supply fan frequency.

Other authors take a statistical approach to
the problem by studying several terminals
and regressing their consumption against
numerous parameters. This is the case of
Ahn and Cho (2015); Kim et al. (2020)
where 20 ATBs in the United States are
considered, with a breakdown of terminals
areas, enplanement, days of cooling and
heating, etc. Li et al. (2017) studies the
energy consumption of ATBs in China, consid-
ering the influence of local climates and
revealing the importance of heating days
against cooling days as the temperature
variation to produce during winters is higher
than the one to produce in summers.

These studies, among many others (cf. e.g the
general guide of World Resources Institute
and Team (2013)), all suggest natural
variables to understand the electric
consumption of terminals, and thus sources
of scope 2 emissions. It also explains part of
scope 1 emissions when fossil fuels are used
at terminals. Hence the literature allows us
to think that potentially relevant parameters
include the dimensions of terminal buildings,
the age of facilities, climate conditions and
well as significant operational parameters.

3.1.3 Proposed methodology

Based on the literature described above, the
method proposed is to estimate scope 1 and
2 emissions as a regression of several factors
relating to airport characteristics, operations,
consumption and local climates. Hence, the
collected data falls into similar categories and
is combined with scope 1 and 2 emissions
of airports to train a model. The reported
values for these scopes, i.e. the dependent
variables, are found in sustainability reports
of numerous airports, many of which are
taking part in the Airport Carbon Accredi-
tation (ACA) program (Cf. ACA (2021)). Once
the best model is found from this training
(and the best regressors are identified), it is
then used to predict emissions on a much
larger dataset on which the same explanatory
variables have been collected. Again, these
variables are composed of:

l airport physical characteristics (e.g.
terminals area),

l airport operations (e.g. passenger data),

l data on closely located power plants,

l local climate data (e.g. temperature).

Other geolocation data such as latitude and
longitude or categorical variables such as the
countries where airports are located can be
added to the above. Nevertheless, we assume
that airports scope 1 and 2 emissions do
not primarily depend on the country where
they are located as we are interested in
their intrinsic characteristics. Official types of
airports is another categorical variable that
could be considered as well, but we will use
it instead as a validation parameter when
displaying our results.

The data employed is the present work is
based on year 2019, but other years can
be covered in a similar way. However, due
to the Covid 19 pandemic, airport activ-
ities have been significantly reduced in years
2020 and 2021, and for that reason these 2
years are not appropriately adapted for such
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an estimate. Indeed, not only airports were
impacted differently by the pandemic based
on local sanitary measures as well as political
choices, they were also affected by other
airports they had operations with (cascading
impact) as well as individual choices of
maintaining or interrupting their activities.
This complexity of individual choices and
the abnormality of the situation can have
a significant biasing effect in the predic-
tions, and for that reason is best to avoid to
establish the models.

3.2 Data collection

Since the modelling involves a combination
of numerous factors, it is important to make
a careful analysis of each data sources,
proceeding to a careful cleaning on each of
them in order to reach a merged dataset with
maximum coverage. Indeed, each feature of
the dataset that translates into a regressor
in the model becomes a limiting feature if
improperly cleaned (high percentage of error)
or if it has a low coverage (high percentage of
missing values). Such a scenario significantly
impacts the model training, which relies on
a limited number of data points, but also
reduces the number of airports for which
scope emissions can be estimated.

3.2.1 Data sources

The most important source of data here
is the dependent variable, namely scope
1 and 2 emissions collected from sustain-
ability reports. The targeted airports were
mainly composed of airports taking part
in the Airport Carbon Accreditation (ACA)
program (Cf. ACA (2021)). This program
includes 395 airports and 6 levels of accred-
itation2, for which combined operations
amount to about 48% of global air passenger
traffic. Unfortunately, most of these reported
emissions remain undisclosed. This list was
then extended to any other airport for which
sustainability reports could be found online.

2 - Ariport Carbon Accreditation

As it is important to notice, scope 2 emissions
are generally reported as location-based or
as market-based. Location-based estimates
rely on grid-averaged emission factors
while market-based estimates reflect the
emissions from electricity that emitters have
chosen from their contractual purchases3.
Scope 2 emissions collected from there
reports were location-based estimates, as
the model intends to understand the real
electricity consumption of airport facilities
and put aside their compensations through
commercial agreements. Other potentially
interesting features were extracted, such as
scope 3 emissions, numbers of passengers
and aircraft movements. The year of focus
was 2019 as it can be considered to be a
”normal” year (before the Covid pandemic),
but other years were also collected. Finally,
this data was checked and completed when
other sources were found.

Airport characteristics were obtained from
OpenStreetMap4 and WikiData5, and
required numerous cleaning as well as
consistency checks based on geospatial
analysis. Most of these characteristics carry
a quasi-permanent aspect, i.e. they do not
change over time other than a timescale
of a decade, hence time considerations are
not needed here. Another characteristic
of airports is the shape of their terminal
buildings. To assess this quantity, we define
the shape parameter of a geo-referenced
polygon as follows:

shape = 4π A
p2

,

where A stands for the area of a polygon
and p for its perimeter. From this definition,
a circular building has a shape parameter of
1, and since a circle maximizes the area at
constant perimeter this is a maximum value.
A square building has a shape of π/4 ≃ 0.78
while an excessively extended building sees
its shape tend to zero. Fig. 2, produced from

3 - GHG Protocol
4 - OSM
5 - Wikidata
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about 14,000 aerodrome and 7,000 terminals,
shows that most aerodromes are rectangular
with a median value corresponding to a ratio
of 8.8 between the length and width. As for
terminals, they can take more diverse shapes,
but are almost never too close to a circle. The
reason behind this reality can be related to
the need to maximize perimeter of buildings
since aircraft have a large span that imposes
a certain extension, as well as constraints
such as simplicity of design with rectangular
buildings.

Airport operations were evaluated from a mix
of WikiData, such as patronage, and other
data sources. A strongly correlated feature
that can be considered is aircraft movements,
available from traffic data such as OAG data.
Some features, like the number of passengers,
required more processing than others and
were then aggregated into yearly estimates,
again focusing on year 2019.

Though most airports buy electricity from
their local power grid, a few are producing
their own electricity (Cf. e.g. ICAO (2017a)).
Assuming a close distance of these power
plants to the airport facilities, we can sporad-
ically add the generation capacity of these
plants (in 2019) to the regression model
and improve scope 2 estimates. The Global
Power Plant Database of the World Resources
Institute (WRI) was used to accomplish this
task.

Indicators of local climates are also believed
to be important for scope 1 and 2 estimates.
Consequently, a dataset from the European
Union’s Climate Change Service was
extracted, the global dataset being based on
the Copernicus Programme6.

3.2.2 Data processing

Since the modelling involves multiple
data sources, the accurate combination of
datasets is of primary importance in order

6 - https://www.copernicus.eu/en

to avoid data losses. When it comes to
WikiData, the data is structured and identi-
fication features can be used. For airports,
the natural identification is the International
Air Transport Association (IATA) location
identifier, in short ”IATA code”. Nevertheless,
when it comes to geolocated data, label
features can be missing and relying on
incomplete features can lead to inconvenient
losses. Hence, a very useful approach is to
use geolocations to combine datasets (such
as points closely located to a polygon’s
boundary or centroid).

Obviously, as accurate and careful the data
processing can be done, the final dataset can
still contain input errors or intrinsic biases
from the lack of better data. For example,
traffic data can give an accurate estimate of
numbers of flights. However, such a number
can be biased when traffic data focusses only
on commercial flights, while some airports
may have their activities specialised on cargo
instead. In such a case, the concerned airport
would be an outlier of the model as predic-
tions may not reflect its true emissions.
Such biases can be treated and corrected, at
least partially and statistically, by using other
highly correlated features (e.g. the number of
passengers) in order to improve the quality of
that data.

At the end of the process, our training
dataset based on sustainability reports of year
2019 has 72 observations for which scope
1, 2 or 3 reported values were collected,
and for which airports were not part of an
airport group on which emissions are collec-
tively reported. On a marginal number of
values, some imputation is done to have
the highest possible statistics. If questionable
regarding a potential bias that it could bring
into the modelling, the airport is discarded.
This dataset serves as the training set (or
rather called here ”model dataset”) in order
to evaluate the best explanatory variables.
Once the best fitmodel is identified, the larger
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Figure 2: Comparison of aerodrome (blue) and terminal buildings (red) shapes.
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dataset holding the identically generated
regressors is used for predictions.

Before describing the modelling, we can
already notice some important facts from the
reported data. Indeed, we can see that scope
2 emissions are in general larger than scope 1,
with a ratio scope 2 / scope 1 = 12.8 ± 24.7
(and a median value at 2.7). Furthermore,
the two dependent variables have a good
correlation, as visible already from the log-
plot in Fig. 3. In fact, the Pearson correlation
between the two is 0.87, but only 0.25 for
their log. This suggests the idea that both
scope 1 and scope 2 can be summed up
and used in regression as a single dependent
variable as well.

The reported data also contains a number of
scope 3 emissions, 32 in total. From this data,
we see that the correlation between scope
1+2 and scope 3 is only 0.15 (and 0.32 on the
logs). This low correlation is a good support
for our two different approaches inmodelling
scope 1 and 2 on the one hand, and scope 3
emissions on the other hand. One should keep
in mind though that scope 3 emissions in
sustainability reports mainly address the LTO
cycle, surface access and other non-collected
sources. The correlations between total scope
3 emissions and LTO cycle emissions is around
0.97, and this is justified from the fact that
the main part of reported scope 3 emissions

comes from the LTO cycle. Between total
scope 3 and surface access emissions, the
correlation is about 0.57, but this contri-
bution is smaller than the LTO contribution
(with a ratio of 0.65 ± 0.89 and a median
value of 0.30).

3.3 Regression model

We will now present the regression model
and fitting method resulting in the most
successful regression of the data. Since
airports cover several orders of magnitude in
size and as such have characteristics which
often take a heavily skewed distribution,
we find appropriate to take the log of the
dependent variables as well as regressors.
This transformation not only reshapes distri-
butions of values closer to normal, they
also significantly improve the regressions and
facilitate the reading of results in terms of
elasticities.

3.3.1 Main model

A regression with all parameters (14 in total)
was first carried out for both scope 1,
scope 2, and both combined (scope 1+2).
As stated above, both regressors and the
dependent variables where taken in log
values. The obtained results and associated
scores are presented in Table 1-I). As expected,
the adjusted R2 value is smaller than R2,
and considering all the available parameters
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Figure 3: Scatter plot of scope 1 and scope 2 emissions in the model dataset (log scale). The dotted line represents the Scope 2 = Scope 1 axis.
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maximizes the R2 value without guaranteeing
the best available adjusted R2.

Considering the limited number of observa-
tions used in the regression, it is important
to use data points of high quality. For
that reason, some outliers were discarded,
as already mentioned. In addition, it is
important to verify that the remaining
points have a distribution close to the large
dataset values if we want the model to
give robust predictions. This check was done
and it reveals some differences between the
two datasets. In fact, most of the airport
characteristics and operations in the training
dataset are larger than the bulk of global
airports, and this simply relates to the
fact that large airports have the capacity
and incentive to report and publish their
emissions, as opposed to smaller ones. This
difference between the datasets is not detri-
mental to the robustness of predictions if the
explanatory variables influence both popula-
tions in the same manner.

Finding the best adjusted R2 is important
as it allows to reach the best regression
while minimizing the number of explanatory
variables. This simplifies the model and
reduces the risk of over-fitting, hence
guaranteeing better predictions on the
large dataset. But reducing the number of
regressors carry another advantage. Since

the large dataset has missing values that
imputation would risk to bias, these values
can’t be completed. Consequently, the
smaller the number of explanatory variables,
the larger the number of airports on which a
prediction can be made.

We consider all possible combinations of
regressors (around 16 thousands), and for
each combination we compute the score
associated to the fit of data that it allows.
Then, out of these generated combina-
tions, the set of regressors corresponding to
the top decile of the best adjusted R2 is
evaluated through the average of p-values
for each explanatory variable, keeping only
the variables of lowest p-values. The model
made of these selected variables is then
considered our best fit model, and later
applied for predictions. The obtained scores
can be seen in Table 1-II), and we should
remark that here as well as the previous
case, the scores are computed ”in-sample”,
i.e. using the same data as employed during
training. This choice is justified from the small
size of the dataset and will be discussed soon
after.

The threshold on p-values to select the best
model is decided from the average p-values
over the best decile described above. For
the scope 1 model, the retained threshold
is around 0.22, with some variables having
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much lower averages. In scope 2 it is
reduced to 0.14 as the number of variables
turns out to be larger, and for scope 1+2
it is taken as 0.16 as it offers a good
separation of explanatory variables. Let us
add to the discussion that our focus here
is to maintain a good level of explanatory
power in the models, while lowering the
number of explanatory variables to increase
the number of predictions. One could also
think of optimizing the prediction dataset by
considering only variables with the largest
coverage. This choice, however, would result
in less explanatory power from the models.
Finally, let us recall here that since the models
are trained on reported data estimating the
CO2-equivalent emissions of airports, these
models are actually predicting the CO2-
equivalent emissions as well, hence partially
including the effect of other GHGs as
considered by airports in their inventories.

As explained, once these operations are done
on the training dataset themodel is employed
on the large dataset for predictions. The best
fit model for scope 1 has 3 explanatory
variables and the large dataset covered by
these features has 3069 instances for which
we are able to obtain predictions. The best fit
model for scope 2, on the other hand, has 4
regressors and 1749 airport predictions, the
larger number of regressors having reduced
the number of airports on which prediction
could be made. Scopes 1+2 emissions were
predicted with only 2 explanatory variables
and reached 4908 airports. Let us note that
since the log of a quantity Q has been taken
as log(1 + Q), some predicted values under
the regression can fall in the interval [−1, 0].
These values, corresponding to very small
predictions of emissions, are discarded from
the results. In the scope 1 model no such case
is found, for the scope 2 model 107 of such
cases appear, and only 10 for scope 1+2.

Finally, a K-fold cross validation was done
on the model dataset, employing the best
fit models of each case (”fixed-formula”)

as well as varying the set of regressors
(”recomputing-best-fit”), this time selecting
the best-only regressor based on the adjusted
R2. This validation is necessary in order to test
the ”in-sample” estimates earlier described.
As for the meta-parameters employed here,
the number of folds was set to K =
20 and for each fold the best fit model
was estimated based on 5,000 random
combinations of regressors. The estimates of
adjusted R2 scores for the fixed-formula and
recomputed-best-fit are reported in Table 1-
III). Looking at the values and their standard
deviations, we can see that the in-sample
estimates of scores were accurate enough,
and the reasonably low standard deviation
indicates robustness in the models.

3.3.2 Alternative models

Other regressors were added in order to
build alternative models. In particular, the
countries where airports are located were
added in the regression in order to capture
possible socio-economic variations. Models
were trained after converting the country
names through one-hot encoding, improving
the fitting scores. Nevertheless, the large
number of involved countries already present
in the training dataset leads to over-fitting,
and hence was not retained.

Another tested approach consisted in
applying K-Means clustering on the large
dataset in order to assess possible changes in
regressors informing on the size of airports,
or any other specific nature. Nevertheless,
and as some scatter plots will reveal in
Chap. 5, the differences between airports
appear to be continuous and consequently
make the clustering not so successful in
splitting the total population in different
groups.
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Table 1: Summary of scope 1, scope 2 and scope 1+2 regressions

Scope 1 Scope 2 Scopes 1 + 2
Number of data points 67 64 66

I) All 14 regressors
R2 score 0.507 0.319 0.388
Adjusted R2 0.375 0.125 0.219

II) 16k regressions (combinations of regressors) + top decile regressors
Number of regressors 3 4 2
R2 score 0.471 0.261 0.328
Adjusted R2 0.446 0.211 0.307

III) KFold Cross Validation
Adjusted R2 (”fixed-formula”) 0.443 ±

0.026
0.214 ±
0.040

0.306 ±
0.021

Adjusted R2 (”recomputed-best-fit”) 0.446 ±
0.021

0.214 ±
0.030

0.306 ±
0.020
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4. Modelling scope 3 emissions

After modelling scope 1 and 2 emissions of
airports, we are now going to describe the
modelling of scope 3 emissions. As these
emissions concern indirect emissions not
owned by airports, from upstream as well
as downstream activities, it is fair to believe
that the number of different sources of scope
3 is larger than sources of scope 1 and
2 emissions. A consequence of this multi-
plicity of sources is the larger variability in
the reporting of these sources, going from
absence of reporting for some airports, to
detailed inventories for others. General infor-
mation, with partial relevance for airport
activities, can be found in Sotos (2015).

4.1 Literature review and approach

It is a priori difficult to know if one or
several sources of emissions are dominating
scope 3. However, simple reasoning and
order of magnitude estimates are enough to
get convinced that cruise emissions largely
dominate passenger commutes to the airport.
Also, emissions during the Landing and Take-
Off (LTO) cycle of aircraft, even though
performed at higher thrust than during the
cruising phase, are not long enough to reach
cruise emissions most of the time.

Consequently, and as supported by sustain-
ability reports where the LTO cycle explains
67% ± 21% of the total of non-cruise
scope 3 emissions (relying on 15 observa-
tions), we will neglect any source of scope
3 emissions other than cruise and the LTO
cycle. As a next order correction, passengers
commute and other surface access emissions
should probably be considered (but difficult in
practice). Furthermore, since both cruise and
LTO emissions directly relate to the perfor-
mance of aircraft engines, and most of their
combustion products being composed of CO2

(> 70%, with most of the rest in water
vapour), we will consider only CO2 emissions
and neglect other possible sources of GHGs
coming as products of non-ideal combustion,
such as nitrous oxide (NO2), methane (CH4),
etc.

4.1.1 Cruise emissions

Cruise is usually defined as the period of flight
where an aircraft is above 3,000 feet (around
914 meters) of altitude. Obviously, an aircraft
can adjust its trajectory and phases of flight
are simplifications meant to capture the main
picture. Following this description, cruise is
made of 3 phases where an aircraft first goes
through climbing from 3,000 feet to cruise
altitude, cruises on a relatively horizontal
trajectory with respect to the ground, and
descends from cruise altitude back to 3,000
feet.

In addition, busy airports have put in place
zones of aircraft rotations, called stacks, to
regulate air traffic and optimize landing
frequency. These stacks are separated by
1,000 feet between 8,000 feet and 16,000
feet of altitude and can be located at
different localizations (e.g. Heathrow airport
has 4 of them). Hence, stack emissions,
though strongly related to airport activities,
do not take part in the reported scope 3
emissions of airports.

Since cruise emissions are not yet reported
by airports, one can argue that the incentive
to research on them is less than for LTO
emissions. However, and as we will show,
cruise emissions are in general dominating
aircraft emissions and as such are of primary
importance for airline companies. Indeed,
airlines are under increasing pressure to
reduce their emissions, and a better under-
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standing of these emissions is necessary to
improve aircraft efficiency.

Estimates of aircraft emissions can span a
vast scope of models, from the most granular
description of fuel consumption from aircraft
engines in Velásquez-SanMartín et al. (2021),
to the most coarse-grained description from
national fuel inventories in Rypdal (2000).
Other publications on the topic relate to
the development of software to compute
emissions, such as Wasiuk et al. (2015) (based
on aircraft schedules), or the use of altitude
trajectories distinguishing between different
types of aircraft as in Filippone et al. (2021).
Finally, some research like Wells et al. (2021)
focuses on aircraft efficiency through the use
of alternative routes benefiting from wind
currents.

4.1.2 LTO emissions

The Landing and Take-Off (LTO) cycle can
be described as the sequence of aircraft
operations taking place under 3,000 feet of
altitude. These different phases include more
precisely the following phases:

l taxi-out (departure),

l take-off (departure),

l climb-out (departure) to 3,000 feet,

l approach (arrival) from 3,000 feet,

l landing (arrival),

l taxi-in (arrival).

As we will see later, some of these phases
are pretty homogeneous in terms of duration
and thrust of engines. This regularity can be
traced back to pilot instructions and training
as well as similarity of aircraft, as well as
the uniformization of airports operations (Cf.
e.g. Yunos et al. (2017)). Such homogeneity is
beneficial to the modelling process.

A vast literature of research has been written
on LTO emissions, with numerous articles
trying to refine the estimates of emissions
for multiple aircraft types or even engines.

For example, Chati and Balakrishnan (2014)
estimates emissions from LTO cycle in opera-
tions from actual flight data as compared
with engine emissions data. Winther et al.
(2019a) offers detailed assessment of relevant
factors as well as methodologies to estimate
LTO emissions. Koudis et al. (2017) studies
the correlation between emissions and thrust.
Simaiakis and Balakrishnan (2010) studies
the impact of airport congestion on taxi
times as well as emissions of 4 U.S. airports.
Khadilkar and Balakrishnan (2012) defines a
model of fuel burn during taxi-out phase and
Chati and Balakrishnan (2013) assess the real
thrust and durations of LTO phases for an
Airbus A330-223. Finally, one should mention
Masiol and Harrison (2014) which provides an
in-depth review on research regarding engine
exhaust emissions and airport emissions.

4.1.3 Proposed methodology

The modelling of cruise emissions is based
on distances between airports, assuming that
aircraft follow the great circles (geodesic
distances) between departure and arrival
destinations. In practice, aircraft can deviate
from these paths for numerous reasons such
as safety, political events, weather conditions,
air traffic control charges, or the attempt
to reach higher fuel efficiency by exploiting
wind currents. Simple corrections are used to
account for these sources of extra travelled
distance. Then based on distance, it is possible
to compute the emissions of flights taking
into account the type of aircraft carrying
passengers and attribute yearly aggregated
emissions to airports, in this case chosen to
be the departing airports. One could choose
the arrival airports as well, the difference in
aggregation being very small over a year since
airports have a limited parking capacity and
high turnover of aircraft, which tend to make
both estimates converging over long periods
of time.

As for LTO emissions, the modelling that we
propose is based on tables of LTO emissions
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for different aircraft, extrapolated to a larger
population of aircraft and corrected from
specific times of traffic data. These times-
tamps allow a partial account of the different
phases of the LTO cycle, correcting the first
estimate of LTO emissions, and separated into
departure LTO and arrival LTO emissions. It is
then possible to aggregate these emissions
for each airport, here attributing to each of
them both their departure and arrival contri-
butions, and compute yearly estimates that
represent the efficiency of airports to operate
aircraft on their ground and vicinity.

For reasons already mentioned in the case of
scopes 1 and 2, the year of focus is 2019 as it
corresponds to a quasi-normal year in terms
of traffics, as opposed to 2020 and 2021
strongly impacted by the Covid pandemic.
Nevertheless, the method proposed here is
perfectly applicable to any year of airport
activities.

4.2 Data collection and processing

This section describes the data employed
in the modelling of scope 3 emissions, for
cruise as well as LTO cycle emissions. Other
sources of emissions such as surface access
are neglected.

4.2.1 Data sources

The modelling of cruise emissions is based
on a distance estimate of fuel burnt by
different types of aircraft. The source of flight
schedule data employed by the model is the
Official Airline Guide (OAG) data1, starting
from year 2019. This data contains, among
numerous features, a detailed description of
flights with timestamps associated to certain
phases of landing and take-off operations.
The coverage of flights appears to be very
good, with OAG’s number of flights reaching
on average of 98% reported flights (with
dispersion of 17%, based on 28 data points).
The tail number of aircraft, though poten-

1 - OAG

tially interesting, was not retained due to
inconsistencies with the aircraft type. The
aircraft identification is done based on the
aircraft type, other sources of data gathered
online, and Ch-Aviation data2. Finally, but
not the least, a table of distance to fuel
consumption from the International Civil
Aviation Organization (ICAO) was used in
order to convert distances into emissions
(Cf. ICAO (2017b)). The number of airports
involved reaches around 8,800 and the
number of flights processed is around 44
million.

The source of data for the LTO cycle estimates
first relies on a table from the European
Monitoring and Evaluation Programme
(EMEP) and the European Environment
Agency (EEA), providing the LTO emissions of
several aircraft (Cf. Winther et al. (2019b)).
This table is leveraged and completed in
order to predict the typical LTO cycle for
more aircraft. This first estimate of LTO
emissions is thus independent from the
airport where the aircraft is operating. The
emissions are then refined through the
integration of time-schedule data from
OAG, specializing the estimate to the airport
itself through this integration of operational
efficiency measure.

4.2.2 Data processing and modelling

Several operations are required to clean
air traffic data and the distance between
airports. When missing, distances are
imputed based on geolocations of airports
and the great circle (GC) distance separating
them. In-house methods have been
developed to identify aircraft types, and
a description of an average aircraft has
been designed to evaluate emissions of
unidentified aircraft. Less than 10% of
scheduled aircraft fall into that category,
and the identification will improve over
time. As mentioned before, distances are
corrected by simple factors depending on

2 - CH Aviation
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their values, and an interpolation is done
from the distance-to-fuel table provided
by ICAO. Finally, a simple emission factor
is applied to estimate the amount of CO2

emitted from flights. Estimates of errors are
also implemented in the process. Following
this prediction, emissions are aggregated for
each departure airports and saved for a given
year of traffic data (here representing 2019).
Statistical errors due to approximations,
unless affected by bias, are expected to
average out and to be further reduced with
the improvement of different steps in the
process.

The processing and modelling for the LTO
cycle has been partially described in the
previous section. As it is the case for
cruise emissions, the LTO estimates rely
on an accurate identification of aircraft
operating at airports. One accurate estimate
of emissions during the LTO cycle, as well as
for any operation, is through the integration
of the fuel flow rate. Since the fuel flow rate
W(P)
ff (t) ≡ dmf/dt describes the amount of

fuel burnt per unit of time, the LTO emissions
can be written as a sum of integrals over the
different phases of the LTO cycle:

LTO emissions = eCO2

∑
P∈P

∫
T(P)
W(P)
ff (t)dt,

where P ≡ {D1,D2,D3, A1, A2} is the set
of departure phases (D1: taxi-out; D2: take-
off; D3: climb-out) and arrival phases (A1:
approach and landing; A2: taxi-in) composing
the LTO cycle of that aircraft. Furthermore,
T(P) is the duration of phase P and eCO2

=
3.16 kg CO2 / kg fuel burnt is the emission
factor converting mass of fuel burnt into
mass of CO2 emitted. It is assumed here that
all fuel is burnt by combustion in the aircraft
engines.

In the absence of engine consumption data of
aircraft, this equation can be simplified under
the assumption of constant thrust of engines.
Indeed, the fuel flow rate relates directly
to thrust through the thrust specific fuel

consumption (TSFC) as W(P)
ff (t) = cTSFCF(t)

(with cTSFC in kg/N = s/m and F(t) in
newtons N = kgm/s2), and assuming a
constant thrust simplifies the above relation
as:

LTO(A) = eCO2
c(A)
TSFC

∑
P∈P

F(A,P)T(P).

Since the TSFC depends on engines, and so on
aircraft types, the LTO emission also depends
on the aircraft itself, as stated through the
exponent (A). Obviously, this approximation
corresponds to perfect conditions and can
only be valid on average, assuming that
proper estimates of thrust F(A,P) is used for
each phase. We further express the thrust
relatively to its maximum value, F(A,P) =
f(A,P)F(A)

max (with f(A,P) in percent). One other
assumption that can be employed here is
that the thrust is the same for each aircraft
during the same phase of the LTO cycle, hence
f(A,P) ≡ f(P). This is supported from the fact
that pilots of different aircraft still follow
similar procedures and the fact that known
values of LTO emissions assume common
values of relative thrust. Consequently, the
LTO emissions are given by:

LTO(A) = eCO2
c(A)
TSFCF

(A)
max

∑
P∈P

f(P)T(P)ICAO,

with f(P) coefficients known from ICAO and
reported in Table2.

Based on the equation above, the LTO
emissions from actual schedule data can
be related to the standard ICAO estimate
by equating the aircraft-only part of the
equation (which is actually unknown), finding
that:

LTO(A) = LTO(A)
ICAO

∑
P∈P f(P) T(P)∑
P∈P f(P) T

(P)
ICAO

.

where T(P)ICAO are the standard durations of the
LTO phases as defined by ICAO and reported
in Table2, and T(P) are the actually measured
durations of these phases when available (cf.
Table2 as well).

Finally, and thanks to the linearity of the
equation that we have derived, we can split
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Table 2: Thrusts and durations of LTO cycle phases from ICAO and in our model.

LTO Phase P
Relative Thrust f(P) (%) Duration T(P)ICAO (s) Duration T(P) (s) in model

Taxi-Out (D1) 7 780 Measure + estimate

Take-Off (D2) 100 42 42

Climb-Out (D3) 85 132 132

Approach + Landing (A1) 30 240 240

Taxi-In (A2) 7 780 Measure

the emissions for both departing and arrival
phases of the LTO cycle, as follows:

LTO(A)
dep = LTO(A)

∑
P∈[D1,D2,D3] f(P) T(P)∑

P∈P f(P) T(P)
,

LTO(A)
arr = LTO(A)

∑
P∈[A1,A2] f(P) T(P)∑
P∈P F(P) T(P)

,

guaranteeing that:

LTO(A) = LTO(A)
dep + LTO(A)

arr.

This method allows in particular the estimate
from airport congestion, where aircraft can
spend a long time taxiing-in or taxiing-out,
representing sometimes an important part
of emissions despite the low thrust used
during these phases. Finally, and in the same
manner as cruise emissions, these estimates
are aggregated for each airport, for both
departure, arrival and total contributions,
hence establishing yearly frequency metrics
that allow direct comparison of airports as
well as validation from the use of reported
data.
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5. Results

This section is devoted to the discussion of
results from the scope 1, 2 and 3 emissions
models described in chapters 3 and 4. We
will first discuss results from the models
separately, followed by a comparisons of the
different types of emissions against each
other.

5.1 Scopes 1 and 2 emissions

This section reports the results from the
method described in Chap. 3 to estimate
scope 1 and scope 2 emissions from regres-
sions of a set of characteristic explanatory
variables.

5.1.1 Global predictions for scope 1

emissions

As stated in Table 1, the use of all 14
regressors returns a prediction with an in-
sample R2 = 0.507, and an adjusted R2 =
0.375. Following the method described in
Chap. 3, the regression applied to 10,000
random combination of regressors and the
selection of the best explanatory variables
from their p-value averaged among to top
decile scores (with a threshold around 0.2),
leads to a model with only 3 variables (and
the intercept). The score of this model is
R2 = 0.471, and an adjusted R2 = 0.446,
which shows the benefits of this approach in
increasing the adjusted R2 value. One should
keep in mind that the motivation here is not
only to increase this quantity, but to capture
the best model for a reduced set of param-
eters, as the less parameters the larger the
amount of airports on which we will be able
to establish a prediction (airports for which
missingness affects some variables).

As it can be seen in Fig. 4, the two regressions
appear to be qualitatively similar, despite
their different scores. One should note

however that the largest scope 1 emitters
are not so well captured by the models, and
will require more attention in the future.
Nevertheless, the model captures part of the
complexity of airports emissions. Indeed, we
find that the best parameters are consistent
with previous literature. For example, we find
that the size of the aerodrome and temper-
ature variations are the most important
factors, with characteristics of the terminals
as well. Hence, the model assesses correctly
that scope 1 emissions relate to activities
on the airport ground as well as heating of
terminal buildings.

The model is then used to predict emissions
for the large set of airports with no reported
scopes. Due to the reduction in number
of explanatory variables, the model can be
applied on as much as 3,069 airports. Using
all 14 regressors would lead to a prediction on
only about 1,600 airports. Scope 1 emissions
are plotted against the most important
regressors in Fig. 5 and Fig. 6. Information
regarding the type of airport (large, medium,
small, etc.) has been obtained from ICAO
and employed as color-coding in order to
check the consistency of results. As it can
be seen, the model data and predictions
appear to be consistent, except potentially for
large variations in temperatures for which the
model may not be representative of the large
dataset. The biggest emitters in the predic-
tions do not exceed the biggest emitters in
the model dataset, which appear consistent
with the fact that the largest airports report
their emissions. As for the color coding, it tells
us that few small airports have large scope 1
predictions and few large airports have small
predictions. Globally, the different types of
airports are well separated by the predic-
tions, which is a proof of model accuracy
and consistency (since the color coding is
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Figure 4: Prediction of scope 1 emissions against reported values, for two sets of regressors.
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independent from the model). Furthermore,
many airports receive smaller emissions than
the model dataset values, as it is expected
from the large population of small and
medium operating airports and confirmed
through the color coding. The distribution
of predictions is presented in the histogram
of Fig. 7. Predicted airports are displayed on
a map in Fig. 8, and it reveals the global
coverage of the predictions.

5.1.2 Global predictions for scope 2

emissions

As in the case of scope 1 emissions, scope
2 emissions are first estimated from the 14
regressors at our disposal. The quality of the
fit is less than for scope 1, showing R2 =
0.319 and adjusted R2 = 0.125, as reported
in Table 1. The 10,000 regressions based on
random combinations of regressors lead us
to select 4 best explanatory variables (with
p-value averages less than 0.15), in addition
to the intercept. The selected model now has
R2 = 0.261 and adjusted R2 = 0.211,
which reveals the less accurate nature of our
model when it comes to scope 2 emissions.
This difference with the scope 1 modelling
could be related to several explanations, one
of which being the different energy mixes in
the countries where airports are located, as

this mix plays an important role in the calcu-
lation of reported emissions and can impact
the predictability of the model.

The in-sample predictions for the two regres-
sions (with respectively 14 and 4 regressors)
are presented against their reported values
in Fig. 9. As we can see from this plot, the
regression is less accurate than scope 1 and
sometimes problematic for larger emitters,
with some airports appearing as outliers.
The most relevant parameters involve the
characteristics of airport terminals as well
as operational quantities like the number of
passengers, which appears to have a positive
influence on scope 2 emissions.

As before, the model is used to predict
emissions for the large set of airports. Due
to more missing values on these regres-
sions, the number of airports receiving a
prediction is only 1,749. Scope 2 emissions
are plotted against estimates of the number
of passengers in Fig. 10 and we can see
that airports reporting emissions have a
bias towards large number of passengers.
As before, the airport type from ICAO is
imported for color-coding, and it confirms a
lesser quality of the estimates here. Despite
the presence of outliers at large scope 2
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Figure 5: Scope 1 emissions against aerodrome surface for both model (crosses) and prediction on large dataset (colored circles).
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Figure 6: Scope 1 emissions against monthly temperature variation for both model (crosses) and prediction on large dataset (colored circles).
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Figure 7: Scope 1 emissions distributions for both model (red) and prediction on large dataset (blue).
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Figure 8: Map of airports from the large dataset receiving a scope 1 prediction.
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Figure 9: Prediction of scope 2 emissions against reported values, for two sets of regressors.
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estimates, due to the lack of precision of the
model, one can still be satisfied with the trend
extracted by the model for a smaller amount
of passengers. This model is expected to
improve with a better coverage of airports in
the model dataset. The distribution of predic-
tions is shown as above in the histogram of
Fig. 11, and predicted airports are displayed
on a map in Fig. 12.

5.1.3 Global predictions for scope 1+2

emissions

Since regressions were done on scope 1 and
scope 2 emissions individually, and because
some airports may sometimes report their
emissions as the sum of scope 1 and 2, it is

interesting to build a model for scope 1 + 2
as well. Based on the totality of regressors, i.e.
14 of them, we find a model with R2 = 0.388
and adjusted R2 = 0.219. When running
10,000 regressions and selecting the best
explanatory variables from the top decile, we
find that 2 variables (plus the intercept) with
average p-value less than 0.15 are enough
to capture most of the explanatory power.
Based on this set of regressors, the scores
remain high with R2 = 0.328 and adjusted
R2 = 0.307, as summarized in Table 1. Inter-
estingly, the 2 explanatory variables involved
are not common to the two other models,
but now involve the temperature average and
another characteristic of aerodromes.
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Figure 10: Scope 2 emissions against number of passengers for both model (crosses) and prediction on large dataset (colored circles).
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Figure 11: Scope 2 emissions distributions for both model (red) and prediction on large dataset (blue).
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Figure 12: Map of airports from the large dataset receiving a scope 2 prediction.
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Despite scope 2 emissions being on average
12 times larger than scope 1 in the model
dataset, it appears that the regressors
capturing less of scope 2 variability make the
model of scope 1+2 ”in between” the two
other models. Following the same method
as before, we predict the values of scope
1+2 emissions on 4,908 airports around the
globe. The distribution of predicted values
appears more reasonable than for scope 2, as
expected from the better scores of the fits,
and the number of outliers is likely to be less.
The histogram of values is shown in Fig. 13.

As we can conclude from these 3 analyses,
this method allows global predictions of
emissions on airports based on a small
amount of reported data. The distributions of
values of the model dataset display positive
skewness and kurtosis further emphasized in
the prediction datasets. This presence of fat-
tail distributions reveals the fact that airport
emissions are made from very different types
of actors, going from very large emitting
hubs to only satellite contributors in the
global network of airports. The acquisition of
more observations with the inclusion of new
explanatory variables, as currently carried on
in parallel to this publication, will further
improve the modelling of emissions and
reach even higher precision.

5.1.4 Relevance in the ESG market

As we already mentioned in Chap. 2, the main
ESG data providers do not offer much data on
airport emissions despite their large coverage
across companies. As a consequence, it can
be interesting to compare our method with
the best data available on the market. To do
this, we have considered the list of airport
companies covered by these providers, and
retained the emission values present in our
model dataset. For CDP, that represents 3
airports, for Sustainalytics and Arabesque
we have respectively 9 and 8 in common.
These last two vendors also cover respec-
tively 9 and 8 airport groups, and as such

are not present in our dataset that focuses
on individual airport emissions, except for
two airport groups in which individual airport
emissions were retrieved. This explains the
lower representation of these datasets in our
comparison. If these data vendors would have
access to all emissions in the airport groups
that they cover, their total number of airports
would be respectively about a hundred and
two hundreds airports. In practice though,
the breakdown of emissions for individual
assets is rarely available. We display our
comparison of datasets in Fig. 14 based on
our Scope 1+2 modelling of the last section.
We can see that our approach relies on more
disclosed data to build themodel, and amuch
larger population when it comes to predic-
tions.

5.2 Scope 3 emissions

As explained in Chap. 4, our modelling of
scope 3 emissions relies on a predictive
estimate of CO2 emissions at the flight
and aircraft levels, using a distance-based
approach for cruise emissions and a time-
based approach for LTO cycle emissions.
Hence, the discussion of this section will
focus on the extraction of knowledge from
the estimates, and not on the interpretation
of potential regressors like it was the case in
the previous section. The number of airports
on which emissions are computed is more
than 8,000 airports globally.

5.2.1 Global predictions for scope 3

emissions from cruise

As intuitively known, the total distance of
departure and arrival flights at airports is
strongly correlated with their number of
departure and arrival flights. This is illustrated
in Fig. 15 where the correlation between
the two variables is obvious. We have used
like before a color coding from the type
of airports defined by ICAO, and the colors
logically display that larger airports have
larger values of total distances flown by
aircraft as well as larger number of flights. On
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Figure 13: Scope 1+2 emissions distributions for both model (red) and prediction on large dataset (blue).
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Figure 14: Scope 1+2 emissions for model (red), prediction on large dataset (purple), and other data vendors (blue, orange, green).
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the other hand, we can see that the dispersion
is larger for small airports, revealing the fact
that some small airports concentrate their
activities around short distance flights, while
others, potentially located in isolated places,
rather have a smaller number of flights of
long distance trips.

We have chosen in this study to attribute
all emissions to the airport of departure.
Other choices could have been made, e.g.
splitting cruise emissions of each flight in
two equal contributions, with each airport
involved getting one of them. Our choice
was mainly motivated by simplicity and the
fact that Heathrow’s airport chooses to report
emissions of its departing flights. However,

since airports aprons and hangars have a
limited storing capacity of aircraft and that
airlines have an incentive to fly their fleet
as much as possible, we can expect that
any difference relating to cruise between
departing and arrival flights would disappear.
This is confirmed in Fig. 16, where we can see
that the total departure and arrival distances
are quasi-equal for large airports, i.e. the
airports with high turnover of aircraft.

Since our model estimates the emissions
from departure flights, it is worth asking
the question of the relationship between the
total departure distance of flights and the
cruise emissions themselves. As we can see
from Fig. 17, there is a strong linear depen-
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Figure 15: Total number of flights against total distance (arrival and departure).
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Figure 16: Total departure distance against total arrival distance.
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dence between the two. This is obviously
explained from the fact that our model of
cruise emissions is based on distance, justi-
fying the small dispersion on the plot. As for
the nature of this dispersion, it relates to the
different populations of aircraft visiting large
and small airports. As we can notice also,
medium size airports appear closer to large
airports than small airports when it comes to
this dispersion, probably traced back to the
similarity of aircraft using them.

In a similar manner, and with some overlap
with the previous figures, we can look at
the relationship between departure cruise
emissions of airports and their total number
of flights (departure + arrival). What we find
in such a case is displayed in Fig. 18, and it
reveals that large international airports are
more uniform than small airports. Indeed,
the low dispersion in this relationship can be
related to the presence of a more uniform
population of aircraft and more regulated
activities. On the other hand, smaller airports
vary in size, shapes and levels of activities.

Another relationship of interest is the
influence from the number of passengers
on cruise emissions. Obviously, we also
expect a strong correlation from the fact
that an aircraft can carry roughly the same
amount of passengers. However, as we can
see in Fig. 19 there exists a sub-category of
medium and small sizes airports for which
the number of passengers is significantly
lower than the generated emissions. Again,
this has to relate to the fact that some
small airports support small aircraft on small
distance flights (possibly involving private
jets also), while some others focus on long
distance flights, probably in direct link with
the major airports and thus much more in
line with their emission pattern.

A similar relationship can be observed from
the average distance of flights of airports (i.e.
their total distance divided by their number
of flights), as shown in Fig. 20. We see from

this plot that medium and large airports can
play a similar role in terms of distances, and
rather differ from the number of operations
they carry. However, the two populations of
small airports are visible here as well. These
two groups of small airports seem to confirm
two different natures of activities, short-
distance-small-emissions activities and long-
distance-large-emissions activities.

5.2.2 Global predictions for scope 3

emissions from LTO cycle

A similar analysis can be drawn for LTO
emissions, and this is the goal of this section.
However, and as described in Chap. 4, the LTO
cycle possesses intrinsic differences between
arrival and departure due to the difference
of operations involved at the aircraft level
(thrust) and the airport level (efficiency in
dealing with traffic, delays). We present in
Fig. 21 the comparison of departure and
arrival LTO emissions, where we directly see
that departure emissions are larger than
arrival emissions for the vast majority of
airports. Two factors can explain this reality,
the first one is that aircraft in general emit
more during the LTO’s departure phase than
during the arrival phase, the second one
is that airports are less efficient at dealing
with departure traffic than arrival traffic, this
due to the higher level of operations during
departure.

In order to prove this argument, we have
adjusted the departure and arrival LTO with
factors directly extracted from Table 2.
Assuming standard thrusts and durations for
the LTO phases, it is expected that departure
emissions should amount to 62.3% and
arrival emissions to 37.7% of the LTO cycle.
Hence, using these factors to re-balance their
values and taking the difference of departure
minus arrival, it is possible to separate (at
least in theory) the influence from aircraft
and the influence from airport (based on real
time values of taxiing). When plotted against
the number of flights, we obtain Fig. 22
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Figure 17: Scope 3 cruise emissions against total departure distance.
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Figure 18: Scope 3 cruise emissions against total number of flights (departure + arrival).
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Figure 19: Scope 3 cruise emissions against total number of passengers.
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Figure 20: Scope 3 cruise emissions against average distance of flights.
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Figure 21: Scope 3 departure LTO emissions against arrival LTO emissions.
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which clearly shows that the biggest airports
generate larger departing LTO emissions than
arrival LTO emissions. This excess of emissions
is much less present for small airports, and
this directly points to the fact that large
airports are more likely to reach saturation
of runways, giving the priority to arrival
flights and thus creating an imbalance in
the duration of taxi-out compared to taxi-in
phases. In other words, emissions from LTO
are amplified by long departing taxi times,
and larger airports face difficult constraints
to reduce them. One should add that these
results are the outcome of both modelling
and time schedule measurements.

When plotted against the total distance of
departure flights, the total LTO emissions
(departure + arrival) show a linear depen-
dence in the same way as cruise emissions.
This relationship can be seen in Fig. 23
and relates to the fact that airports with
high number of flights mechanically generate
more emissions. In addition to this fact,
different populations of aircraft between
airports have an influence on the amount of
LTO emissions.

In a similar way, the LTO cycle emissions
directly scale with the number of flights
operated by airports. This can be seen in
Fig. 24 where this relationship shows more
uniformity for large airports again, and where
small airports display lower LTO emissions.
Once again, the nature of aircraft visiting
small airports plays an important role as small
airports carry less passengers at a slower rate,
hence employing smaller aircraft fleets which
use less fuel than larger aircraft.

Dividing now the emissions per the total
number of flights and showing the result
against the total distance of flights, we
can see in Fig. 25 that large airports have
larger LTO emissions than small airports due
to the aircraft models operating on their
aerodromes, which are on average bigger and
heavier, hence consuming more fuel. Using
the type of airport to divide the populations,
we find 1.57 ± 0.95 tCO2 emitted per LTO
cycle for large airports. On the other hand,
small airports show LTO cycle emissions of
1.00 ± 0.74 tCO2 per flight and medium
airports show 0.98 ± 1.17 tCO2. Interest-
ingly, and maybe due to the large variability
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Figure 22: Scope 3 difference between adjusted departure LTO and adjusted arrival LTO emissions against total number of flights.
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Figure 23: Scope 3 LTO total emissions (departure + arrival) against the total distance of departure flights.
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Figure 24: Scope 3 LTO total emissions (departure + arrival) against the total number of flights (departure + arrival).
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of aircraft nature on medium airports, the
standard deviation of the prediction for
medium airports is larger than the rest.

As we have shown above, large airports
have higher emissions per number of flights.
However, one should not conclude that
large airports are for that reason inefficient.
Indeed, and as we know, large airports serve
a much larger population than small airports.
In Fig. 26 is displayed the total LTO emissions
against the number of passengers. As we
see, both are directly correlated since each
LTO cycle brings its own contribution to the
emissions.

As suggested above, large airports actually
appear more efficient in their emissions than
smaller ones. This is illustrated in Fig. 27,
where large airports display a much higher
efficiency from their LTO emissions, with on
average 227 grams of CO2 per passenger
for an LTO cycle, and a median of 0.26
grams (due to the heavily skewed distri-
bution of values). The values obtained from
medium and small airports are much larger,
with a median value of 4.01 grams of CO2

per passenger for medium airports and 57.7
grams of CO2 per passenger for small airports.
Some of these values for small airports may
be impacted by the aircraft identification
process if their aircraft population is made
of non-standard aircraft with respect to the
LTO cycle’s emission table used in our study.
In addition, one should keep in mind that
large values appearing for some medium and
small airports could be due to uncertainty
in passenger data, as data on small and
medium airports is less likely to be accurate.
Some partial accounting for error from LTO
emissions is also assessed and reveals that
small and medium airports are significantly
more affected than large airports. Never-
theless, if such a trend is confirmed it would
indicate that small airports are significantly
more exposed to transition risk than larger
airports based on their scope 3 LTO emissions.

5.2.3 Predictions for scope 3 cruise + LTO,

intensity metrics

The comparison of cruise and LTO emissions
is of major importance since almost no
airport reports cruise emissions, but almost
all airports reporting scope 3 emissions do
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Figure 25: Scope 3 LTO total emissions (departure + arrival) per flight against the total distance of flights.
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Figure 26: Scope 3 LTO total emissions (departure + arrival) against the total number of passengers.
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Figure 27: Scope 3 LTO total emissions (departure + arrival) per flight per passengers against total distance (departure + arrival).
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provide an estimate of LTO emissions. Hence,
we can say that airports recognize the LTO
cycle as a major source of scope 3 emissions,
but consider that cruise emissions should not
be part of their scope 3 estimates. Heathrow
airport has not taken this position though,
and reports both cruise and LTO emissions
as part of its scope 3 inventory. Fig. 28
shows the two main sources of scope 3
against each other, and we clearly see that
cruise emissions almost always dominate the
LTO cycle on average over airport activities.
We also see that this is even more true
for large airports as they focus on long
distance flights. Taking ratios, we find that
the LTO cycle represents 15.7%±9.4% of the
cruise emissions for large airports, 19.2% ±
13.0% for medium airports, and 23.6% ±
33.8% for small airports. In addition, we
can compute the sum of airport emissions
for both sources, as reported in Table 3 and
find that large airports, despite their higher
efficiency, are responsible for 86% for global
cruise emissions (1,075million tCO2) and 80%
of global LTO emissions (135 million tCO2).

Let us now combine cruise and LTO in order
to extract metrics which are more repre-
sentative of the total scope 3 emissions.
Obviously, and as already stated in Chap. 4,
we are assuming that all scope 3 emissions
from these two sources alone make other
sources negligible. Though not true in theory,
the cruise emissions, and to some extent
the LTO emissions, are so important that
such an approximation is good approxi-
mation in practice. This is especially true
for airports focusing on long-distance for
which the commute of passengers and
employees cannot reach the same level as
cruise emissions.

Despite the importance of evaluating airports
on their absolute emissions as we have done
until now, it is also important to evaluate
them from intensity metrics. A natural metric
to consider is the amount of emissions from
cruise + LTO per flight against the average
distance of flights for each airport. This
metric is displayed in Fig. 29 and shows
again that large airports specialize in long
distances and thus large emissions per flight.
As for small airports, it is interesting to see

44

Carbon Footprints and Financial Perfromance of Transport Infrastructures: the Case of Airports 44 December 16, 2022 9:38



Figure 28: Cruise emissions (departure) against Scope 3 LTO emissions (departure + arrival).
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Table 3: Summary of global scope 3 emissions (cruise and LTO)

Type of airport Global Scope 3 from
Cruise (mtCO2)

Global Scope 3 from LTO
(mtCO2)

Total Scope 3 from Cruise
+ LTO (mtCO2)

Large airports 967 108 1075

Medium airports 140 24 164

Small airports 17 4 21

Total 1124 136 1260

again two different ”branches”, with some
small airports having long flights and quite
large emissions, possibly relating to private jet
travel or connecting islands to larger airports,
and smaller airports with small amount of
emissions, possibly consisting of short flights
of smaller aircraft. Seaplane bases, marginal
in number and not discussed before, still
compose an interesting isolated group of
very low emissions and very short distances
flights, as we would expect from the types of
aircraft operating through them.

We consider also the total emissions (cruise
+ LTO) per passenger-kilometer (pkm) against
the average distance of flights, as presented
in Fig. 30. What we can see from this plot
is the efficiency of large airports and their
proximity withmedium size airports, probably

due to their common population of aircraft.
Small airports show some differences, with
some of them being much less efficient than
others. When averaging over values by type
of airport, we find the median value of
emissions to be 104 grams of CO2 per pkm for
large airports, 164 grams of CO2 per pkm for
medium size airports, and a probably unreal-
istic value of 2, 800 grams of CO2 per pkm
for small airports. As we will show later,
small airports estimates are likely to be more
affected by aircraft misidentification, and
hence have larger errors in their estimates.
We are also dealing with skewed distri-
butions that can easily shift averages and
medians. Interestingly, the values for large
and medium airports are in good agreement
with reported values. Indeed, some authors
talk about 90 grams of CO2 per pkm for
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Figure 29: Scope 3 total emissions (cruise + LTO) per flight against average distance of flights.
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passenger aviation1, others report higher
values like 285 grams of CO2 per pkm2, with
even around 420 grams for some private jets3.
One should finally mention that mean values
are much higher than the medians, this due
to the heavily skewed distributions repre-
senting these quantities.

The numbersmentioned above can be verified
and analysed through another calculation,
based on averages over airports. Indeed,
denoting by ⟨. . .⟩ an average over airports
of a certain type (large, medium or small),
we can average the number of flights n,
the emissions e (grams of CO2), the distance
d (km) or the number of passengers p,
which can be seen as random variables over
the population of airports within a given
type. Based on this concept, we can define
two types of average scope 3 emissions per
passenger-kilometers S :

l S1 = ⟨(e/n)⟩
⟨(d/n)⟩⟨(p/n)⟩ ,

l S2 = (⟨e⟩/⟨n⟩)
(⟨d⟩/⟨n⟩)(⟨p⟩/⟨n⟩) = ⟨n⟩ ⟨e⟩

⟨d⟩⟨p⟩ .

1 - ICCT
2 - EEA
3 - Compare Private Planes

For a uniform population of airports, these
two definitions would lead to the same result,
but as populations vary they lead to different
predictions, as summarized in Table 4. Inter-
estingly, these definitions bring much more
consistent results between the different types
of airports, indicating less emissions for large
airports than for small ones, but with a much
more reasonable gap between the two.

The emissions per passenger-kilometer (pkm)
can also be compared against the total
number of passengers. Plotting this quantity
gives the results shown in Fig. 31, where it
appears again that large airports are more
efficient than small airports. What may be
interesting to point at is the fact that when
plotted against passengers, the two popula-
tions of airports appear to form only one
continuous distribution. In addition to this
metric of emissions per pkm, other defini-
tions of averages as illustrated above can be
derived. What remains important here is that
the predictions are consistent with reality and
that they give an insight into airport opera-
tions.
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Figure 30: Scope 3 total emissions (cruise + LTO) per passenger-kilometer against average distance of flights.
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Table 4: Average Scope 3 emissions following two different definitions of averages.

Type of airport
S1 (grams CO2 per pkm) S2 (grams CO2 per pkm)

Large airports 106 82

Medium airports 102 86

Small airports 124 86

Figure 31: Scope 3 total emissions (cruise + LTO) per passenger-kilometer against number of passengers.
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Let us finish this section by displaying a map
of some of the airports covered by the scope
3 emissions calculations. Out of the 8,000
airports for which we establish a prediction,
about 5,300 of them have known geoloca-
tions that we can use to establish a map
representing part of their population. This
map is shown in Fig. 32. As we can see, our
predictions are global and representative of
the world population of airports.

5.3 Comparative analysis of scopes

Now that we have presented the results of
our model for the computation of scope 1
and 2 emissions as well as scope 3 emissions
from cruise and LTO cycle, we will gather
these predictions together and compare their
magnitudes in order to bring a better under-
standing of the most important sources of
emissions.

5.3.1 Hierarchy of scope emissions

Having now predictions on scope 1, 2 and 3
emissions, it is interesting to represent their
values on a common ground allowing for
comparison. This is what Fig. 33 provides,
showing the emissions as predicted by our
different models. As we can see, scope
1 predictions are more concentrated than
scope 2, as probably related to the lack
of precision of the scope 2 model (and
revealed by its large predicted values). Scope
3 emissions are larger than scope 1 and 2, as
expected, but display a large dispersion due to
the large number of airports it encompasses,
including numerous small airports. The total
number of airports, separated by their type, is
summarized in Table 5.

Since these distributions represent different
populations of airports, it is also interesting
to plot the distribution of emissions for the
subset of airports that has a full set of predic-
tions. Doing this reduces the population of
airports to 1515 mostly limited here by the
scope 2 model, with 443 large airports, 967
medium airports, and 103 small airports. The

corresponding distributions can be found in
Fig. 34, and show much clearer separation
of values. Indeed, scope 1 and 2 appear to
have median values of similar magnitude,
with scope 2 having a larger dispersion and
skew towards large values due to a lesser
precision in themodel. On the other hand, the
prediction of scope 3 emissions appears to
have a median value an order of magnitude
larger, with a ratio of about 40 times larger
than the median of scope 1 and 70 times
larger than the median of scope 2. These
predictions and comparisons that they allow
offer a very valuable insight into airport
emissions for investors who want to limit
their exposure to transition risks.

5.3.2 Interdependence between the

different scopes

Now that we have seen the difference
in magnitude of the different scopes of
emissions, it is interesting to explore the
relationship between them. As we can see
from Fig. 35, scope 1 and scope 2 emissions
are not strongly correlated. For large airports,
we find a Pearson correlation of 0.10, possibly
impacted by the quality of scope 2 predic-
tions.

When comparing scope 1 predictions with
scope 3 predictions from LTO, we find that
the two are strongly correlated, as illustrated
in Fig. 36. The correlation coefficient is 0.58
for large airports and 0.63 when gathering all
predictions. When considering only airports
having all predicted scopes, this coefficient is
also 0.63. This interesting correlation appears
to make sense since part of scope 1 emissions
relate to the size of airports as well as ground
vehicle activities, which are expected to scale
with LTO emissions.

The correlation between scope 2 and scope 3
emissions from LTO is much less pronounced.
For large airports, it is around 0.16, but this
correlation disappears when considering all
types of airports. This relationship is shown
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Figure 32: Map of 5,300 airports covered by our scope 3 emissions estimates (out of 8,000).
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Figure 33: Histogram of Scope 1, 2 and 3 predictions for all predicted airports. Vertical lines represent the first and third quartiles of the distributions.
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Table 5: Number of airports in each type for the different developed models of emissions.

Type of airport
Scope 1 Scope 2 Scope 3

Large airports 554 467 629

Medium airports 1954 1139 3024

Small airports 521 139 1666

Unknown / other type 40 4 2783

Total 3069 1749 8102

Figure 34: Histogram of Scope 1, 2 and 3 predictions for predicted airports that have all scopes predicted. Vertical lines represent the first and third quartiles of
the distributions.
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Figure 35: Scope 2 predictions against scope 1 predictions.
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Figure 36: Scope 3 predictions from LTO against scope 1 predictions.
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in Fig. 37, and the lack of correlation, aside
from the low scope of the model, can be
traced back to the fact that airport terminal
buildings which compose most of scope
2 emissions would not have an electricity
consumption primarily related to the number
of aircraft on the airport ground.

Now that we have considered LTO emissions
that are often reported in sustainability
reports, but not cruise emissions, it is inter-
esting to consider the correlation of scope
1 against LTO and cruise emissions together
(total scope 3). The corresponding result for
scope 1 is given in Fig. 38 and shows a
correlation only slightly less than correlations
reported between scope 1 and scope 3 from
LTO (less than a 0.03 difference). This is not a
surprise considering the correlation between
scope 3 from LTO and scope 3 from cruise,
which is around 0.9. The interpretation thus
remains the same as above. It may be inter-
esting to add that the median value for the
ratio Scope 3 / Scope 1 is about 170 when
it comes to large airports, 35 for medium
airports, and 12 for small airports (values
based on airports having all predictions).

We can draw very similar conclusion for the
correlation of scope 2 emissions and total
scope 3 emissions as the case of scope 2
against scope 3 from LTO. A correlation of
0.20 appears for large airports and around
0.58 for small airports, but almost disappears
totally when combined together (as is also
the case for medium airports alone). Results
can be visualized in Fig. 39. The median value
for the ratio of Scope 3 / Scope 2 turns out
to be 263 for large airports, 43 for medium
airports, and 14 for small airports. These
values are quite sensitive to the modelling
andmay changewith the improvement of the
model.

Finally, and maybe most interestingly, we can
explore the correlation between scope 1 + 2
emissions and total scope 3 emissions. This
relationship is shown in Fig. 40 and resembles

the relationship of scope 3 against scope 2,
with correlations of 0.22 for large airports,
0.57 for small airports, and almost zero when
it comes to medium airports or all airports
combined. As for the ratio Scope 3 / Scope
1+2, we find a value of 80 for large airports,
13 for medium airports, and 4 for small
airports.

5.4 Limitations and improvements

As any other study, this work has limitations
which call for further improvements. We will
review here some of the most appealing
aspects of amelioration that could be imple-
mented in order to reach higher accuracy and
coverage from predictions.

5.4.1 Evaluation of errors

Evaluating the uncertainty of predictions is
of primary importance in order to assess the
quality of the models. When it comes to our
statistical models of scope 1 and 2 emissions,
the calculation of errors has partially been
accounted for through the description of R2

scores and the qualitative description of the
models. As we have already described, the
scope 1 model in its current stage provides
better predictions than the scope 2 model.

When it comes to the estimate of errors for
scope 3 models, we can first rely on approxi-
mations made by the models themselves. We
thus considered the error in emissions when
an average aircraft model was used (which
as stated before appears in less than 10%
of cases). This estimate has been made for
both cruise and LTO emissions and appears
to be reasonable in practice. Other sources
of error were not considered as they were
not measurable or estimated to be negligible.
Based onwhat has been explained, Fig. 41 and
Fig. 42 show the errors on scope 3 emissions
respectively from cruise and the LTO cycle at
airports. As we can see on both plots, the
errors on the estimates are smaller than the
estimates themselves. For cruise emissions on
large airports, the error is on average of 14%,
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Figure 37: Scope 3 predictions from LTO against scope 2 predictions.
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Figure 38: Scope 3 predictions against scope 1 predictions.
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Figure 39: Scope 3 predictions against scope 2 predictions.
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Figure 40: Scope 3 predictions against scope 1 + 2 predictions.
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with median at 4%, while for LTO the values
of mean and median are slightly above 10%.
Errors are significantly larger when it comes
to medium and small airports. Finally, let us
add that the employed emission factor of
3.16 kg CO2 / kg of fuel burnt is likely to have
a relative 5% error on its value affecting all
predictions.

As a final check of accuracy, one can use
the small amount of reported scope 3 data
in order to test our predictions. 15 airports
where found reporting scope 3 LTO emissions
and being present in our dataset. The ratio
of predicted LTO emissions over the reported
ones was found to be 1.7 ± 2.1, but
after the removal of one outlier fell much
closer to real values with a ratio of 1.2 ±
0.7. This result is satisfying considering the
small number of data points as well as the
sources of error discussed earlier. As for scope
3 emissions from cruise, the only airport
known to the authors is Heathrow airport.
According to Heathrow’s sustainability report
for year 2019, its estimated departure cruise
emissions are 18,742 tCO2e while our model
gives a prediction of 20, 561 ± 900 tCO2

(recall that we assumed CO2e ≡ CO2), hence
within 10% of the real value. As for the LTO
emissions of Heathrow airport, our model
predicts 1, 268 ± 82 tCO2 while the reported
value is 1, 250 tCO2e, hence falling at 1.5%
close to the reported value.

5.4.2 Current limitations and

improvements

As already mentioned, the statistical models
for scope 1 and 2 can be improved with the
inclusion of more data points to train the
model efficiently. In particular, a potential
source of concern is the absence of small
airports in publicly reported data which
can bias the predictions of the model as
we have seen especially in the case of
scope 2 predictions. Including more points
in the modelling dataset should improve the
quality of predictions further and this task

is already under development. In addition
to this increase in instances, the collection
of additional features and in particular
geospatial features will likely improve the
estimates for both scope 1 and 2 models.
This process of larger collection is already
under way. As scope 2 emissions are related
to electricity consumption, and thus are more
likely to depend on socio-economic factors,
new explanatory variables could be added in
order to establish a better prediction. Finally,
we have seen that the number of airports
in the prediction dataset could be limited by
some particular features. A better treatment
of these variables could improve the situation
and is under study as well. The application of
several models on different instances of the
prediction dataset, though diminishing the
overall quality of predictions, is also a simple
solution that would allow a full coverage of
airports globally.

Since scope 3 modelling is significantly
different from scope 1 and 2, the challenges
to improve the predictions of scope 3
models are of different nature. One source
of improvement is to perfect some of the
steps in the calculation. Indeed, we already
mentioned that the aircraft identification
was not perfect and can be improved
for a higher accuracy at the airport level
(though potential miss-identifications statis-
tically cancel-out over a large number of
aggregated flights). This is true for both cruise
and LTO models. As mentioned already as
well, the use of great circles for the distance
travelled by aircraft may slightly underes-
timate the real distance flown by aircraft,
but some of this underestimate has already
been factored out in our modelling through
empirical corrections of distances. Finally,
a mixed approach between distance and
travel time could be integrated for a better
modelling of particular routes and aircraft.

When it comes to the estimate of LTO
emissions, similar comments can be made
due to their reliance on a common subset
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Figure 41: Errors of scope 3 predictions from cruise emissions against their estimates.
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Figure 42: Errors of scope 3 predictions from LTO emissions against their estimates.
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of data. The LTO estimate depending on
schedule time data, the integration of
complementary time features and data
relating to the specific aspects of LTO
emissions by multiple aircraft types could
also bring more precision in the estimates.
Finally, and as explained in the modelling
part, the thrust of aircraft during the
different LTO phases has been assumed
constant and independent from aircraft
types. More specific modelling of thrust at
the aircraft level could be implemented in
order to push further the precision of the
model.

Final considerations regarding developments
can be made based on the frequency of
the extracted metrics. Since our estimates
focus on airports and because reported data
is available on an annual basis, the natural
frequency of our estimates is yearly. We
have focused on year 2019 since it was
not significantly impacted by Covid 19 as
compared to years 2020 and 2021, but our
models are directly applicable to these years
as well. However, thanks to the availability of
most processed data at a higher frequency
level (with high confidence for scope 1 and
2 models and great certainty for scope 3
models), it is also possible to predict scope
1, 2 and 3 emissions on a quarterly or
monthly basis. This availability of predictions
at higher frequency is potentially interesting
for investors, especially in fast movingmarket
conditions such as what we have seen during
the Covid-19 crisis. It is also relevant for pre-
quarter predictions. In general, these predic-
tions of carbon footprints bring a new type
of information to investors and could quickly
become a requirement for the evaluation of
assets before an eventual acquisition.
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6. Carbon Emissions and Financial Returns

In this chapter, we take our findings one
step further and investigate the relationship
between the carbon emissions of airports and
their financial performance.

If emissions represent a known factor of
transition risk today, then financial markets
should be pricing such transition risks consis-
tently and require higher returns for invest-
ments that are more exposed to these risks,
ceteris paribus. Conversely, if the financial
returns of airports do not relate in any
way with their level of emissions once
other control variables have been taken into
account, it suggests that transition risks are
not priced.

We use data from infraMetrics® to match
the financial performance of 25 large private
airports with their scopes 1&2 and scope 3
emissions, as well as their carbon intensity for
scopes 1&2 and scope 3.

We first examine the relationship between
emissions and the capital returns of these
airports, controlling for the presence of other
factors that typically drive returns in infras-
tructure investments (6.1).

We then look at expected returns: a forward-
looking view of the market the riskiness of
an investment, and whether the level of
emissions is related to the level of expected
returns.

6.1 Realised (price) returns and

emissions

6.1.1 Data

CO2 intensity is expressed in gCO2/pkm i.e. it
is a reflection of the emissions of the airport
by unit of output (or service) produced.

When expressed in terms of Scopes 1&2,
it reflects the operational efficiency of the
airport: higher Scopes 1&2 intensity indicates
that the airport requires consuming more
energy to deliver one unit of service.

When expressed in terms of Scope 3, it is a
measure of the economies of scale achieved
by the size of the airport: higher Scope 3
intensity indicates that fewer, smaller and/or
shorter flights were using the airport, leading
to a higher consumption of CO2 per unit of
passenger/kilometre.

Since we have estimated carbon emissions
for the year 2019, we use data going back
6 years until 2019 i.e., we assume that the
relative level of emissions between airports in
2019 can be held constant going back several
years. Going forward, because of the Covid-
19 lockdowns and their differing impacts on
airports, this assumptions cannot be held.
Hence, our dataset spans 2013-2019 for
realised returns.

The 25 airports for which infraMetrics
reports monthly financial return represent a
combined market capitalisation of USD50bn
in 2019.

We examine price (or capital) returns to
focus on the potential impact of emissions
on the equity discount rate and avoid any
noise from the large dividends paid by
infrastructure investments in the relationship
between returns and carbon emissions.

6.1.2 Sorted portfolios

We first sort assets into ‘high’ and ‘low’
portfolios by ranking each airport above the
medianmetric as ‘high’ and below themedian
as ‘low’ of CO2 scopes 1&2.
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Table 6: Mean and median monthly returns of scopes 1&2 sorted portfolios

Portfolio Mean Return Median Return
H/H -0.0009 0.0043
H/L 0.0065 0.0080
L/H 0.0092 0.0124
L/L 0.0014 0.0068

Table 7: Mean and median monthly returns of scopes 3 sorted portfolios

Portfolio Mean Return Median Return
H/H 0.0075 0.0063
H/L 0.0064 0.0074
L/H 0.0055 0.0090
L/L 0.0005 0.0054

Next, we build four portfolios combining the
carbon intensity (gCO2/pkm) and level of
emissions (tCO2) thus:

l H/H : high carbon intensity & high
emissions

l H/L : high carbon intensity & low emissions
l L/H : low carbon intensity & high emissions
l L/L : low carbon intensity & low emissions

The weighted geometric returns of portfolio
H/H are then computed as:

PortfolioH/H = exp
( 1∑N

i=1 ωi

N∑
i=1

ωi.ln(rh/hi,t )
)

where ωi are the asset weights, and rh/h are
the returns of the assets in the H/H portfolio
with both high carbon intensity and high
carbon emissions.

The price returns of the other three portfolios
are computed in the same manner. Table 6
shows the mean and median monthly return
of each sorted portfolio. When it comes to
Scopes 1 and 2, we observe that low carbon
intensity airports (i.e., more efficient airports)
that, at the same time, are high emitters,
have seen higher realised returns than high-
intensity (i.e., less efficient) airports.

We repeat this exercise for scope 3 emissions.
Table 7 shows the monthly returns for the
same four portfolios sorted on the basis of

scope 3 emissions. Here, low-intensity (i.e.,
large scale) airports that, at the same time,
are high emitters, have performed the best in
terms of price returns

6.1.3 Carbon factor portfolios

Following the literature on asset pricing, we
create so-called factor mimicking portfolios,
by subtracting the average of high intensity
portfolios from that of low intensity ones, so
that

CarbonFactor = 1
2

(H/H+H/L)−1
2

(L/H+L/L)

Table 8 shows the descriptive statistics for
each HML portfolio using scopes 1&2 or
scope 3 respectively, as well as an index of
all airports in the sample. Figure 43 shows
the cumulative performance of all three
portfolios.

We note that a high-minus-low Scopes
1&2 intensity portfolio of airports has
negative average returns i.e., low CO2-
intensity airports have higher price returns
than higher CO2-intensity airports on a scope
1&2 basis. Conversely, the HML portfolio
using scope 3 emissions exhibits positive
returns and tends to track the all airport index
over time on a cumulative basis. In other
words, airports with high scope-3 emission
intensity have tended to have higher price
returns between 2013 and 2019.
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Figure 43: High-minus-Low Carbon Airport Portfolios (Scopes 1&2, 3) and All Airports
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Table 8: Monthly returns of the HML and All Airports Portfolios

HML Scope 3 HML Scopes 1-2 All Airports
Mean 0.004 -0.003 0.005
Median 0.002 0.000 0.010
StdDev 0.028 0.033 0.050
Semi-Variance 0.025 0.036 0.052
Sharpe ratio 0.112 -0.101 0.078
Kurtosis 4.846 7.586 -0.074
Skewness 0.821 0.086 -0.050

Since we are considering price or capital
returns only, these results give a sense of the
difference in capital gains over the period
between high emissions and low emissions
airports: the discount rate of low Scope 1&2
intensity and high scope 3 intensity airports
decreased more (capital gains have been
positive) over the period.

Hence, those airports that investors have
found the most attractive have seen the
highest capital gains i.e. yield compression,
are the ones that exhibit higher opera-
tional efficiency (low scope 1&2 intensity) but
also lower scale economies (higher scope 3
intensity).

This could suggest that investors value lower
scopes 1&2 carbon intensity, which could be
a signal of lower exposure to transition risks,
but not scope 3 intensity, which is positively
related with a reduction of the cost of capital.

6.1.4 Carbon factor regression

Other factors could explain this difference
in the performance of airports that exhibit
higher or lower carbon intensity. Next, we run
the following regressions:

l A base regression of all airport price
returns against the standard factors that
explain the realised returns of infras-
tructure assets: Size, Leverage, Profit,
Investment and Country risk.

l A similar regression using the HML
Carbon factor portfolio as an additional
explanatory variable, to determinewhether
this effect is also present in realised
returns;

l A regression of the HML Carbon factor
portfolio itself against the same factors to
determine is it is driven by ‘something else’
than standard pricing factors: i.e. if there
may be a ‘carbon factor’ in the price returns
of unlisted airports.
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Table 9: Regression of Airport Returns 2013-2019

Beta SE p.value
(Intercept) -0.0011 (0.0021) 0.61273
Market 1.25 (0.0563) 0
Size -0.8322 (0.2395) 0.00087
Leverage 0.8972 (0.215) 0.00008
Investment 0.3568 (0.2636) 0.18018
Profit 0.7591 (0.1681) 0.00002
Ctry.Risk -0.4185 (0.0857) 0.00001
Deg. freedom 72
Adj-R2 94.04%

Airport returns

Table 9 shows the results of the basic monthly
return regression of all airport returns based
on the standard infraMetrics factor returns,
in local currency for the period 2013-2019.
The construction of factors used in the
regression loosely follows the Fama-French
five-factor model. Factor computation details
are described in the appendix.

Table 9 confirms that the monthly price
returns of the infraMetrics airports index
can be explained with a high degree of
fit (Adjusted-R2 of 94%) by an unlisted
infrastructure market factor and 5 factors
capturing the returns of key risk factors found
in unlisted infrastructure investments.

All factors are highly significant except
the investment factor. Indeed, the airports
present in the index are all existing brown-
field assets and, relative to the infras-
tructure market as a whole, they are all ‘low
investment’ assets. As a result the returns of
airports do not load on the investment factor.

The intercept of the regression is not statis-
tically different from zero, meaning that the
factors used in the model explain all the
variance of the realised returns and there is
no residual ‘alpha’ in the model.

Next, we examine the impact of the HML
Carbon Factor we built above in this setting.

Airport returns with the HML Carbon factor

Tables 10 and 11 show the regression results
for the same model with the addition of a

Table 10: Regression of Airport Returns with HML Scopes 1&2 Factor

Beta SE p.value
(Intercept) -0.0017 (0.0021) 0.4235
HML Scopes 1&2 -0.0818 (0.0629) 0.19767
Market 1.2588 (0.0585) 0
Size -0.7852 (0.2402) 0.00166
Leverage 1.0457 (0.2283) 0.00002
Investment 0.3331 (0.268) 0.21796
Profit 0.7775 (0.1699) 0.00002
Ctry.Risk -0.3711 (0.089) 0.00009
Deg. freedom 71
Adj-R2 93.03%

Table 11: Regression of Airport Returns with HML Scope 3 Factor

Beta SE p.value
(Intercept) -0.0003 (0.002) 0.88187
HML Scope 3 -0.167 (0.0809) 0.04269
Market 1.2442 (0.0597) 0
Size -0.7141 (0.2356) 0.0034
Leverage 0.8497 (0.2332) 0.00051
Investment 0.2662 (0.2747) 0.33577
Profit 0.606 (0.189) 0.00201
Ctry.Risk -0.3348 (0.0875) 0.00028
Deg. freedom 71
Adj-R2 91.51%

High-minus-Low Carbon intensity factor for
Scope 1&2 and scope 3 respectively.

Adding the HML Scopes 1&2 to the regression
does not yield any additional significance to
themodel. The variable itself is not significant
and the model adjusted-R2 is slightly lower.

However, adding the HML Scope 3 to the
regression does yield some extra statis-
tical significance albeit limited and with a
lower goodness-of-fit. The result suggests
that airports returns may load negatively
on a HML Scope 3 factor i.e. controlling
for everything else, higher Scope 3 intensity
airports would have slightly lower realised
price returns i.e. a higher risk premia.

HML Carbon Factor Regressions

Finally, we regress the HML Carbon Factor
returns against the same set of factors that
explains airport returns. Results are shown in
tables 12 and 13 for HML Scopes 1&2 and
Scope 3, respectively.

The HML Scope 1&2 factor regression exhibits
a low degree of fit and has a slightly signif-
icant intercept (at the 5% confidence level).
HML Scope 1&2 returns load on leverage and
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Table 12: Regression of HML Scope 1&2 Returns

Beta SE p.value
(Intercept) -0.0086 (0.0041) 0.0406
Market 0.1891 (0.1207) 0.12173
Size -0.0555 (0.4025) 0.89074
Leverage 1.2377 (0.3813) 0.00178
Investment -0.2419 (0.5285) 0.6486
Profit 0.2006 (0.2966) 0.50109
Ctry.Risk 0.3658 (0.1602) 0.02538
Deg. freedom 72
Adj-R2 15.93%

Table 13: Regression of HML Scope 3 Returns

Beta SE p.value
(Intercept) 0.0042 (0.0029) 0.1468
Market -0.0604 (0.0854) 0.48181
Size -0.0237 (0.2845) 0.93374
Leverage -0.9179 (0.2191) 0.00008
Investment -0.367 (0.4037) 0.36634
Profit -0.8805 (0.1635) 0
Ctry.Risk 0.1766 (0.1259) 0.16492
Deg. freedom 72
Adj-R2 67.68%

country risk with a positive sign, indicating
that some of the difference in price returns
between high and low carbon intensity
airports is driven by higher exposures to these
risk factors amongst the airports considered.

In the case of HML Scope 3, the expected
value of the factor is not different from zero
(the intercept is not significant) and 67% of
its variance can be explained by differences
in leverage and profit in the HML constituent
airports. The coefficients for these two only
significant factors are negative meaning
that the difference in returns between high
and low Scope 3 intensity airports hinges
around these airports being more profitable
(the profit factor has a negative sign) and
less leveraged i.e. lower returns than the
market, which is consistent with the evidence
reported in table 8.

In conclusion, the combination of the results
presented above suggests that there is not
persistent, systematic difference in returns
between high and low carbon intensity
airports, whether one considers Scopes 1&2
or Scope 3.

Standard, well-documented pricing factors
suffice to explain all the observed variance of

realised price returns, suggesting that there
is no ‘carbon factor’ or effect when investors
set the price of such investments.

Finally, we look at expected returns and
emissions.

6.2 Expected returns and emissions

Figure 44 shows the relationship between the
weighted-average cost of capital or WACC
in 2019 for the airports in the sample on
the horizontal axis, and their emissions both
in absolute terms (Scopes 1&2 and Scope 3)
and relative terms (Carbon intensity) on the
vertical axis presented in logs.

Unlisted the realised returns considered
above, the WACC is a combination of the cost
of debt and cost of equity of the firm and a
reflection of its forward looking or expected
returns. It is therefore a candidate to try and
detect the presence of a carbon-related risk
premia.

However, it is quite clear from this chart
that there is no relationship between the
WACC of airports their emissions, which is
also consistent with the evidence presented
above.
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Figure 44: Emissions and weighted average cost of capital
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7. Conclusions

We will now summarize the findings of
this paper and recall its main implications
regarding the use of such models and predic-
tions for investor decisions. We will also
discuss possible future improvements of our
approach.

7.1 Why this study

This work addressed the estimate of carbon
footprints in the airport sector. Transition
risks have received growing consider-
ation, especially since COP21 and the Paris
Agreement in 2015, as investors have
expressed increasing concerns and now
demand more data to manage the associated
risks in their investments. Carbon emissions
have thus become central as they are
believed to be a good proxy of transition
risks. Sustainable investing has been growing
in popularity as well in the recent years and
there is a strong demand for estimates of
climate-related risks.

Some of themotivations to study airports can
be found in the fast growth of their sector of
activity over the last few decades. Due to the
relative importance of air transport emissions
per passenger and the partial existence of
alternatives to flights, airport activities may
be more at risk than some other types
of infrastructures regarding transition risks.
Global warming is not only an economic
threat to airports, it is also a magni-
fying factor of diverse hazards impacting
their activities. Hence multiple airports have
shown the will to transition to net zero
by 2050, and will need important efforts
to reach this target. This may explain the
presence of a certain amount of sustainability
reports in the sector, which are fundamental
in order to establish or validate models of
emissions.

Nevertheless, the number of publicly reported
emissions is still limited and an increase in
reporting is necessary for a better under-
standing of airports, especially when it comes
to the smallest airports on which data is
hard to obtain. However, since the main
motivation is to understand the principal
sources of emissions in the airport sector,
large airports are by far the most important
airports to capture. This lack of significant
coverage of airport emission metrics is thus
a problem which current ESG data vendors
on the market do not satisfactorily handle.
Solving this issue through the provision
of transition risks estimates was the main
motivation of the present work.

As these estimates are of relevance for a
multiplicity of applications, they are of major
importance for infrastructure investors
who look for better data to evaluate the
exposure of their assets to transition risks
as well as acquiring new assets or reducing
the carbon footprint of their portfolios.
As a recent survey from EDHECinfra to
infrastructure investors has revealed, the
main ESG data needed by investors concerns
climate impact, and in particular the impact
of assets on climate change (before the
impacts on natural resources, human
well-being or economic development). The
models presented here thus respond to
the investors’ main concern by providing
climate-change impact-related predictions
covering the majority of assets world-wide,
and developing metrics of relevance for their
decisions.

7.2 Main findings

We have shown here that it was possible
to leverage geospatial data and traffic data
to establish statistical and predictive models.
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Our approach on scope 1 and scope 2
emissions have shown that a few data points
of quality used to establish a statistical model
was enough to reveal the importance of
some explanatory variables, in agreement
with the current literature and bringing its
own contribution to the field. We have found
that our model of scope 2 emissions was
slightly weaker than scope 1, but we believe
that the inclusion of more training data
points will increase this precision in a very
near future. As for scope 3 emissions, the
models developed for cruise and LTO have
shown equally, if not actually more promising
results than scope 1 and 2 models. Hence,
they offer an insight in sources of emissions
which are still not consistently reported and
bring new possibilities of insight regarding
sustainability issues.

Using these models, we have found that
scope 1 and 2 emissions were relatively
similar in size, when considered on average.
On the other hand, we have found that
scope 3 emissions where much larger than
the sum of scope 1 and 2 emissions.
Having considered only two sources of
emissions within scope 3, i.e. cruise and LTO
cycle emissions, we have found that cruise
emissions were significantly larger than LTO
emissions. The two types of emissions have
been logically found to have a very strong
correlation. As for other correlations, we have
found that scope 1 and 2 or scope 2 and
3 were not significantly correlated, but that
scope 1 and 3 were interestingly correlated.
Finally, by using a classification of airports in
different types, we have shown that hierar-
chies could depend on the type of airport,
and it was often found that the quality of
modelling increased when considering large
airports.

Furthermore, our analysis of carbon
emissions estimations and financial perfor-
mance generated several interesting results.
First, low-carbon-intensity airports that are
high emitters perform the best. In other

words, airports that are high CO2 emitters
but, nevertheless, are either energy-efficient
or large-scale performed the best in terms of
price returns.

Second, when looking only at carbon
intensity and its link to performance, we
found that low CO2-intensity airports,
which are operationally more efficient, had
higher price returns than high CO2-intensity
airports on a scope 1&2 basis. This result
may suggest that investors value lower
scopes 1&2 carbon intensity, signaling a
lower exposure to transition risk. However,
once controlling for the standard factors
explaining realized returns of infrastructure,
this effect was found not to be statistically
significant.

Likewise, higher CO2-intensity airports
characterized by lower economies of scale
achieved higher price returns on a scope 3
basis. However, once controlling for standard
factors, higher scope 3 intensity airports
are found to have a slightly lower realized
returns, close to the non-significance
threshold.

Overall, the combined results of the carbon-
to-performance analysis suggests that there
is not persistent, systematic difference in
price returns between high and low carbon
intensity airports, whether one considers
Scopes 1&2 or Scope 3. In other words,
carbon intensity as a proxy of transition risk
is not priced in airport returns.

7.3 Implications for risk management

and reporting

As already stated, the current ESG data
market is insufficient to satisfy infrastructure
investors in their risk management decisions.
We have presented through this publication
a methodology that is general and lead
to robust predictions that can be extended
to other types of assets. Thanks to their
generality and simplicity, the models derived
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from this method are able to generate
a large amount of data, reaching global
coverage, and respond to the current need
of infrastructure investors. Consequently, our
predictions represent an important progress
for investors in their risk management
and provide a significant support for the
reporting of emissions from assets which
either do not estimate their emissions, or do
not disclose them.

These developed models are very relevant
for the assessment of carbon footprints
and transition risks which directly relate to
them. Hence they bring important infor-
mation regarding assets, and due to the lack
of reported data especially come in handy in
a context where only a few assets publicly
report their emissions. In addition to the raw
estimates which are scope 1, 2 and 3, we have
shown that intensity metrics could also be
derived based on emissions combined with
operational or physical variables. As models
grow in coverage, complexity and accuracy,
more metrics can be developed in order to
refine the toolkit for investors willing to
integrate sustainability considerations into
their investment strategies.

As we described in the introduction,
numerous regulatory frameworks are being
put in place to uniformize the reporting of
sustainability factors. These new regulations
will not only set a path towards good-
practice reporting for businesses, but also
likely support the implementation of new
laws regulating their activities, supporting
carbon taxes or emission trading systems,
and other very relevant aspects of business.
At the moment, infrastructure assets are
not all exposed in the same way to those
frameworks, and a lot of progress remains
to be made in order to establish the new
standards. This work does not only provide
a solution for airport investors and other
stakeholders, but also shows that if estimates
of emissions can be made, regulations based
on them can also be implemented. In an

epoch where big data has become the norm
for business, this type of approach developed
here is unavoidably going to become usual
practice as well.

7.4 Future improvements

As any other type of modelling, our models
rely on simplifying assumptions to establish
their predictions. The current models already
show important results and their weaknesses
reveal potential opportunities of improve-
ments. Some of these improvements are
already under consideration by EDHECinfra
and they intend to bring better coverage of
assets globally as well as increase precision
of the estimates. These models have strong
potential for further improvements and
several new features will be integrated into
their design. A perfect example of new
features is the integration of infrastructures’
financial data in which EDHECinfra plays a
significant role. As these models progress and
get more complex, their performances will
also improve, as we intend to show in the
near future.

Our study has focused on the airport sector
and its goal has been to show that an in-
depth description of their carbon footprints
to assess transition risks could be performed.
As already explained, the airport sector is a
good case study for other transport infras-
tructures which represent more than 10% of
global emissions. As our approach combines
statistical models, geospatial analysis and
physics-based models, it is equally promising
for numerous types of infrastructures, if not
all. Hence, these models also compose a basis
of understanding and set standards for the
development of more models covering all
types of infrastructure assets and companies
at the global level.
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A. Appendix: Factor Returns

In this section, we describe the computation
of the factor returns used to decompose the
performance of an infrastructure portoflio.
The construction of the factor returns loosely
follows the Fama & French approach to
design factor replicating portfolios using
sorted portfolios of asset returns.

The market factor is simply defined as the
weighted geometric returns of all N assets in
the universe. That is,

Market = exp
( 1∑N

i=1 ωi

N∑
i=1

ωi.ln(ri,t)
)

Where ri is the (excess or price) return of asset
i and ωi is the weight of asset i.

The Size factor or ‘small minus big’ (SMB)
factor is the average return on nine small
asset portfolios minus the average return on
nine large asset portfolios.

Assets are sorted into small and large
portfolios according to the median value of
their total assets on the 30th of June of each
year. This sort is then maintained until June
of the following year, at which point the
mediam breakpoint is estimated again and
assets sorted again into small and large asset
portfolios.

To build the nine portfolios, assets are
also sorted into low, medium and high
portfolios in terms of leverage, profitability
and investment (capex), using the 33rd and
66th centile breakpoints on the 30 June
of each year year. The returns of each of
these High/Medium/Low portfolios are then
combined thus:

SMBleverage =1
3

(Small/HighLeverage+

Small/MediumLeverage+
Small/HighLeverage)−
1
3

(Big/HighLeverage+

Big/MediumLeverage+
Big/HighLeverage)

SMBprofit =1
3

(Small/HighProfit+

Small/MediumProfit+
Small/HighProfit)−
1
3

(Big/HighProfit+

Big/MediumProfit+
Big/HighProfit)

SMBinvestment =1
3

(Small/HighInvestment+

Small/MediumInvestment+
Small/HighInvestment)−
1
3

(Big/HighInvestment+

Big/MediumInvestment+
Big/HighInvestment)

Finally, the size fatcor is computed as:

SMB = 1
3

(SMBleverage + SMBprofit + SMBinvestment)

The Profit factor is the average return on the
two high profit portfolios minus the average
return on the two low profit portfolios, using
median breakpoints on the 30th of June.
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Profit =1
2

(Small/HighProfit+ Big/HighProfit)−
1
2

(Small/LowProfit+ Big/LowProfit)

Likewise, the returns of the investment
(respectively, leverage or Term) factors are
computed using the average return of two
high investment (leverage or Term) portfolios
minus the average return on the two low
investment (leverage or Term) portfolios,
using median breakpoints on the 30th of
June.
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