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Foreword

The purpose of the present publication,

“Cash Flow Dynamics of Infrastructure

Project Debt”, which is drawn from the

NATIXIS research chair at EDHEC Infras-

tructure Institute-Singapore, is to empir-

ically validate a number of hypotheses

put forward in previous EDHEC-Risk

Institute papers on the valuation and risk

measurement of private infrastructure debt

instruments.

In this paper, the authors rely on a new

and unique dataset of infrastructure project

cash flows to compute and document

the dynamics of debt service cover ratios

(DSCRs) in private infrastructure projects,

thus allowing the implementation of a fully-

fledged structural credit risk model.

This dataset is one of the early outputs of

a substantial effort launched at EDHEC to

collect private information and document

the investment characteristics of infras-

tructure investments, and create a global

database of infrastructure cash flows

spanning several decades.

This paper offers a powerful validation of

the insights developed in earlier publica-

tions of the EDHEC/NATIXS Research chair,

including the existence of tractable DSCR

dynamics in infrastructure project finance,

and the ability to predict credit events and

value credit instruments using such metrics.

In a context were data paucity remains a

concern and complete time series of cash

flows covering the decade-long life of

investments remain rare, the authors also

propose a novel approach to modelling

and predicting the ”trajectories” of DSCRs

in infrastructure projects. The paper

documents the existence of homogenous

”families” of cash flow dynamics in infras-

tructure projects that are best explained

by the contractual characteristics of these

investments as well as the initial financial

structuring choices made jointly by project

sponsors and creditors.

Hence, this paper also addresses the

question of the path-dependency found in

project dynamics and the resulting serial

correlation of returns, especially in cases

where achieving full diversification might

be challenging.

Borrowing from statistical methods usually

applied in the physical sciences, the authors

show how new information arriving

sequentially, which is typical of long-

term investment in infrastructure, can be

integrated to infer the conditional param-

eters of cash flow distributions and the

related credit risk measures for subgroups

or even individual investments.

We are grateful to NATIXIS for their support

of this study in the context of this research

chair at EDHEC Infrastructure Institute-

Singapore.

Noël Amenc
Associate Dean, EDHEC Business School
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Executive Summary

The objectives of this paper are to document

the statistical characteristics of debt service

cover ratios (DSCRs) in infrastructure project

finance, and to develop and calibrate a

model of DSCR dynamics.

For this purpose, we collect a large sample

of realised DSCR observations across a

range of infrastructure projects spanning

more than 15 years, representing the

largest such sample available for research

to date, and conduct a series of statis-

tical tests and analyses to establish the

most adequate approach to modelling and

predicting future DSCR levels and volatility.

Using these results, we build a model of

the conditional probability distribution of

DSCRs at each point in the life of infras-

tructure projects.

DSCR Dynamics Incorporate Key
Information About the Credit Risk of
Infrastructure Debt
In a previous paper (Blanc-Brude et al.,

2014), we showed that debt service cover

ratios can play a pivotal role in the

modelling of credit risk in infrastructure

project finance.

This is because the DSCR of an infras-

tructure project company, which measures

the amount of cash available to make the

current period’s debt service, provides us

with

1. An unambiguous definition of the point

of hard default (default of payment), i.e.

DSCR = 1, and

2. An equally unambiguous definition of

key technical default covenants i.e.

DSCR = 1.x, while both types of default

events create significant embedded

options for creditors following a credit

event.

3. Moreover, knowledge of DSCR dynamics

is sufficient to estimate the firm’s

distance to default (DD), which is the

workhorse of the so-called Merton or

structural credit risk model.

4. DSCR dynamics can also be combined

with future debt service to compute the

expected value and volatility of the firm’s

future free cash flow, which is instru-

mental in measuring enterprise value in

the case of infrastructure projects, since

they derive their value almost entirely

from future operating cash flows.

For these reasons, documenting DSCR

dynamics using realised DSCR data is an

important part of the objective to create

investment benchmarks of private infras-

tructure debt, as described in the roadmap

published by EDHEC-Risk Institute in 2014

(Blanc-Brude, 2014).

A Combination of Empirical Analysis
and Statistical Modelling is
Necessary
DSCRs in infrastructure project finance are

mostly undocumented both in industry and

academic empirical literature. While DSCR

information is routinely collected by the

6 A Publication of the EDHEC Infrastructure Institute-Singapore
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Executive Summary

creditors of infrastructure projects, this type

of data is typically confidential and not

available in large datasets.

From such data paucity, especially in time

series, it follows that empirical observations

alone are not sufficient to document the

expected behaviour of infrastructure project

cash flows over their entire investment life,

and a combination of ex antemodelling and

empirical observations is necessary.

Finally, private infrastructure investment

tends to be characterised by very large

individual investments, almost necessarily

leading to poorly diversified portfolios. This

suggests that assuming the mean-reversion

of investors’ infrastructure debt portfolios

may not be realistic and that idiosyncratic

risk should be taken into account.

In particular, individual infrastructure

investments can exhibit significant ”path

dependency” and investors cannot neces-

sarily take for granted the notion that they

are exposed to the ”median infrastructure

project.”

For both sets of reasons (data limitations

and the importance of firm-specific risk),

an adequate model of the DSCR should

be able to capture conditional dynamics

and explicitly integrate the different credit

”states” that an infrastructure project might

go through.

This can help both learning from the data as

and when it becomes available, and taking

into account the path-dependency of each

instrument when estimating future cash

flows, instead of assuming a reversion to the

population mean.

Current academic and industry literature is

static in nature and relies on ”reduced form”

credit models, which are likely to be biased

given the nature of empirical data available

and, in the current state of empirical

knowledge, can only address a limited

number of dimensions of private infras-

tructure debt investment: the historical

frequency of default events, and to some

extent, average recovery rates.

For these reasons, in this paper we

endeavour to better document the

dynamics of DSCRs in infrastructure

project finance and build a model of DSCR

dynamics using Bayesian inference to

describe credit state transitions and to

estimate the mean and variance of the

DSCR in each state and at each point in

an instrument’s life. This allows better

prediction of defaults, conditional on the

actual trajectory of individual investments

or groups of projects. The ability to predict

cash flows and their volatility is then

instrumental in the implementation of the

private infrastructure debt valuation model

defined in Blanc-Brude et al. (2014).

Dividing Infrastructure Investments
into Groups Defined by Their
”Business Model”
In Blanc-Brude et al. (2014), we described

two generic and intuitive types of infras-

tructure project companies and called them

”contracted” and ”merchant”.

A Publication of the EDHEC Infrastructure Institute-Singapore 7
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This distinction was informed by the casual

observation that the financial structure of

infrastructure project finance vehicles is

often such that it requires, at the onset,

either a rising or a flat ”base case” DSCR

profile.

A rising base case DSCR profile then implies

an increasing volatility of DSCRt. That is,

creditors would demand a higher DSCR in

the future to protect themselves against

rising expected volatility of the cash flows

available for debt service (CFADS). Such

projects would also have longer ”tails” 1

1 - The amount of time between the
original loan maturity and the end of
the project’s life, thus allowing higher
recovery rates in the event of restruc-
turing.

and exhibit between 70% and 80% of

initial senior leverage. We argued that

such structuring decisions signalled infras-

tructure projects that were exposed to

commercial risks, such as a power plants

selling electricity at market prices, and

referred to these projects as Merchant
infrastructure.

Conversely, we argued that the decision

to structure a project while requiring a

lower and flatter base case DSCR profile

implied the expectation of a lower and

constant conditional volatility of cash flows.

We observed that projects with little to no

market risk are financed with such a flat

DSCR base case and also have shorter tails

and a higher level of senior leverage, usually

around 90%. Examples of these projects

include social infrastructure projects, such

as schools or hospitals that receive a

fixed payment from the public sector, or

energy projects that benefit from a long-

term ”take-or-pay” purchase agreement. We

called these projects Contracted infras-

tructure.

In this paper, we endeavour to determine

statistically whether realised DSCR
dynamics fall into categories determined

by the distinctions made above between

Contracted and Merchant infrastructure, as

well as exogenous conditions at the time of

financing and when the data is observed.

We then use our results to design a model

of DSCR dynamics.

The Largest Sample of DSCR Data
Available for Research to Date
Our dataset of realised DSCRs is built using

data manually collected and verified from

the audited statements of accounts of

several hundred project companies, as well

as DSCR data reported by private contrib-

utors.

We hand collected 15 years of realised DSCR

data for more than 200 projects in Europe

and the United States covering our two

broad categories of projects (those receiving

a contracted income and those exposed

to merchant or commercial risks), in seven

sectors, from the early 1990s to 2015.

Our initial analysis of the data reveals some

important points that confirm our intuition:

the average credit risk profile of infras-

tructure projects can be usefully captured by

categorising instruments in broad groups or

families of underlying ”business models.”

The two groups correspond to two

distinctive DSCR processes, with statis-

tically different mean and variance

parameters and following different project

time dynamics. We also find, as intuition

8 A Publication of the EDHEC Infrastructure Institute-Singapore
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predicts, that contracted infrastructure

DSCRs in the cross section are much less

affected by macro-variables or the business

cycle than merchant projects.

We confirm our hypotheses that the

DSCR profile of an infrastructure project is

strongly related to the firm’s total business

risk, and show that more highly leveraged

projects achieve lower levels of realised

DSCR volatility i.e. in project finance high

leverage signals low asset risk as initially

argued by Esty (2003).

But while descriptive statistics and linear

regression models provide some insights

about the determinants of the DSCRs, they

fail to capture DSCR dynamics in full.

Indeed, we find that the DSCR profiles of

individual projects and families of projects

are highly non-linear, auto-regressive and

heteroskedastic (variance is not constant).

Hence, a more advanced model that can

capture these dynamics is needed.

Tracking the ”Coordinates” of the
DSCR Distribution in the
Mean-Variance State-Space
If the DSCRt is serially correlated and

can change profile during the investment

lifecycle of infrastructure projects, the ex
post trajectory of individual projects could

in principle correspond to any combi-

nation of high/low expected value E(DSCRt)
and high/low volatility σ2DSCRt. The DSCR

of populations of projects would equally

reflect the weighted trajectory of their

constituents in a DSCRt mean/variance

”plane”.

Numerous models exist that aim to

determine the position of a dynamic

system and, based on the latest round of

observations, to predict where it will be

positioned in future periods. Such systems

are frequently used in robotics, aero-spatial

and chemistry applications. In this paper,

we apply such approaches to estimate the

position of a given infrastructure project

in a mean/volatility DSCR plane at a given

point in time, and to predict its position —its

DSCR mean and variance ”coordinates” so

to speak —in the following periods.

In the descriptive part of our analysis of

the data, we show that realised DSCRs can

be fitted to a lognormal process up to

their 90th and 85th quantiles for contracted

and merchant projects, respectively, at each

point in their lifecycle, which allows us

to develop an easily tractable model of

parameter inference.

Hence, we propose a two-step modelling

strategy combining a three-state model

corresponding to break up points in the

otherwise lognormal dynamics of the DSCR,

with a filtering model to infer the values

of the Lognormal process parameters (its

”coordinates”) in the state in which the

DSCR is indeed lognormal.

Three-State Transition Probabilities
The DSCR process is assumed to occur in

any one of three states at time t: a risky

state (R) in which it is indeed an autore-

gressive lognormal process, a default state

A Publication of the EDHEC Infrastructure Institute-Singapore 9
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Figure 1: Illustration of the DSCR path between states
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Figure 2: Probability in being one of the three DSCR states for contracted and merchant projects (D: default state; R: risky state; S: safe state).
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(D) defined by a threshold corresponding to

DSCRt = 1 in which the DSCR process

stops until it emerges from default; and

a safe state (S), corresponding to high

realised values above the ”good-lognormal-

fit” quantile, in which case, as long as the

DSCR stays in that state, the project debt

is considered risk-free. This illustrated by

Figure 1.

Hence, once a project’s DSCR breaches

the hard default threshold represented by

DSCRt = 1, it enters the default state,

which it may or may not leave after a

number of periods. In this state, creditors

can take over the firm and optimise the

value of exercising this option depending on

the size of their exit costs and of restruc-

turing costs. They may decide to waive the

event of default or engage in negotiations

with project sponsor to restructure the firm

and its debt or indeed take over the firm and

seek another sponsor (see Blanc-Brude et al.,

2014, for a formal model).

10 A Publication of the EDHEC Infrastructure Institute-Singapore
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Hence, the firm may transit out of the

default state (into the risky state) with some

probability (say, πdr) at the next period, or

stay in this state and again transit out of

default at the next period, etc.

In this state, the DSCR process effectively

stops (in most cases, there is no debt

service), hence estimating its mean and

variance is irrelevant since the project is

already in default.

In the safe state, on the contrary, the

realised DSCR is so high that no matter

how volatile the process might be, from a

senior creditor perspective, the probability

of default is not significantly different from

zero. The debt is (conditionally) risk-free. As

before, in expectation at time t, an infras-

tructure project may transit in and out of

the safe state at each point in the future,

with some probability (say, π sr).

In this state, estimating the parameters

of the DSCR distribution, in particular

estimating its variance, is also irrelevant.

Finally, in between the default and safe

states, a project’s DSCR may take values

between 1 and some higher threshold ¯DSCR.
From this state, it may either stay in the risky
state at the next period, or transit ouf of it

into the state of default ”d” or the safe state

”s”, both described above.

In this state, we know from our empirical

results that if the upper threshold is set at

the 85th/90th quantile of our DSCR sample,

the data follows a lognormal process, the

paramaters of which (position and scale)

have to be estimated (see below).

Formally, this setup amounts to a relatively

simple model of conditional state transition

probabilities, which can be set in terms of

a series of binomial draws and calibrated

using Bayesian inference given some prior

knowledge (e.g. we know from credit rating

studies that projects tend to stay in default

for 2.3 years) and counting the number

of projects crossing the different state

thresholds, conditional on which state they

are in at the previous period.

The combination of the conditional proba-

bilities of switching state at each point in

time are then combined into the probability

of being in any given state at time t, which

is illustrated by figure 2.

For contracted projects the probability of

being in the risky state is much higher

compared to the probability of being in the

other two states i.e. contracted projects are

more likely to stay in the ”normal” risky

state.

For merchant projects, the probability of

being in the risky state is lower, while the

probabilities of being in the default and

safe states are higher compared to the

corresponding probabilities for contracted

projects. Thus, merchant projects are found

to have more diverse DSCR trajectories in

state space, and each state is less persistent

(stable).

This result confirms that path depen-

dency can be an important dimension of

A Publication of the EDHEC Infrastructure Institute-Singapore 11
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infrastructure investment insofar as assets

are more or less heterogenous and can

be difficult to fully diversify very large

and bulky assets. For instance, our results

suggest that contracted infrastructure is

more homogenous than merchant projects,

which are more likely to follow paths that

diverge strongly from the mean of the

population.

Group and Individual DSCR Trajectories
To determine the value of the lognormal

process parameters in the ”risky” state

discussed above, we propose to use a

straightforward implementation of so-

called particle filtering models to infer the

parameter values of the DSCR’s lognormal

process in the risky state i.e. the state

in which documenting and tracking the

volatility of the DSCR really matters,

because it is a direct measure of credit risk.

Filtering models are a form of signal

processing and aim to arrive at some best-

estimate of the value of a system, given

some limited and possibly noisy measure-

ments of that system’s behaviour. Given

our modelling objectives to accommodate

small samples, and to avoid assuming static

values for the DSCRt distribution param-

eters, we must be able to revise any

existing parameter estimates once new

data becomes available. This process is

best estimated iteratively using Bayesian

inference techniques described in detail in

the paper.

We show that such a framework allows

the dynamics of DSCR to be derived in

well defined groups of projects as well as

individual projects, including tracking the

individual DSCR ”path” followed by invest-

ments that do not necessarily correspond to

the median infrastructure project.

The estimated dynamics of the DSCR process

in contracted and merchant projects is

shown in Figure 3, which describes the

change in density of the DSCR process

in investment time, and figure 4, which

describes the trajectory of the DSCR state in

the mean/standard deviation plane.

From such results, certain credit risk conclu-

sions are immediately available, such as

the expected default frequency for hard

defaults but also any level of technical

default (DSCRt = 1.x) as shown in figure 5.

These results allows us to characterise

the behaviour of groups of infrastructure

projects which exhibit reasonably homoge-

neous dynamics, however, we know that

highly idiosyncratic trajectories and path

dependency should be a point of interest in

a context where diversification is difficult to

achieve in full.

Hence, we also show that the ability to infer

both the expected value and the volatility

of the DSCR process allows us to take a

much more informed view on the credit risk

of projects that substantially deviate from

their base case.

For instance, consider an infrastructure

project that follows an oft-observed

trajectory: while it remains in the risky

state throughout its life, it starts off with a

relatively high DSCR, implying a merchant-

12 A Publication of the EDHEC Infrastructure Institute-Singapore
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Figure 3: DSCR densities for contracted and merchant families.
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Figure 4: DSCR trajectories in the state (m, σ) plane, for both families.
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type structure with relatively high DSCR

volatility, but later on undergoes a large

downward shift in its realised DSCR level,

e.g. as the result of a negative demand

shock, while its DSCR realised volatility

from that point onwards also decreases

markedly.

A concrete case of such a trajectory could

be a toll road experiencing significant loss of

traffic after an economic recession, but for

which the residual ”baseload” traffic is much

less volatile than before the shock, and still

sufficiently high to keep the DSCR out of the

default state.

Such a project would not be adequately

captured by the mean DSCR process of its

original family, even though this was the

A Publication of the EDHEC Infrastructure Institute-Singapore 13
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Figure 5: Probabilities of hard and soft defaults for contracted and merchant families; computed as the probabilities of DSCRt falling below 1.0 and
1.05, respectively.
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Figure 6: Filtered DSCR quantiles and standard deviation for a single project experiencing a negative shock.
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best available starting point to anticipate its

behaviour at t0.

In this illustration, we know the ”true”

underlying DSCR process that is otherwise

unobservable, and how it is impacted by

the negative demand shock. The point of

the example is to show that as we observe

realised information for individual invest-

ments, our estimates of the true process can

quickly converge to the true value and then

track it as it evolves during the life of the

investment.

Figure 6 shows the filtered DSCR mean and

standard deviation along with the realised

DSCR values and the true standard deviation

of the project. As soon as the DSCR diverges

from its original trajectory the model takes

this new information into account, and if

the divergence persists, future estimates of

the expected value of DSCRt are updated
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Figure 7: Project’s distance to lockup, soft, and hard defaults and the corresponding probabilities of lockup, soft, and hard defaults, estimated using
filtered DSCR mean and volatility.
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accordingly. Likewise, initial estimate of

the volatility of DSCRt on the right panel

of figure 6 are corrected as information

about the lower realised volatility becomes

integrated into each posterior value.

The ability to revise the DSCR dynamics

of individual projects directly leads to the

revision of their risk metrics. For example,

figure 7 shows the probabilities of dividend

lockup, soft default, and hard default,

respectively, and suggests that the negative

jump in the DSCR, combined with lower

realised volatility of DSCR, has no noticeable

effect on the project’s probability of hard

default, a negligible impact on probability of

soft default, but a noticeable impact on the

probability of a dividend lockup.

Towards Larger Samples of DSCR
Data
This paper shows that a powerful statis-

tical model of credit risk relying on DSCR

dynamics can be developed, and provides

important insights for the valuation of

private credit instruments in infrastructure

project finance.

It also militates for standardising the data

collection and computation of items such as

the debt service cover ratio in infrastructure

project finance, and for pooling this infor-

mation in central repositories where it can

be used to create the investment metrics

that investors need (and regulators require)

to be able to invest in large, illiquid assets

such as private infrastructure project debt.

Such analyses will be further developed as

new data is collected and standardised to

improve our ability to track the DSCR path

of individual and groups of infrastructure

projects, and increase the number of control

variables and the robustness of parameter

estimates.

EDHEC is committed to the continued devel-

opment of this research agenda, both in
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terms of data collection and technological

development.
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1.1 Objectives
The objectives of the paper are to document

the statistical characteristics of debt service

cover ratios (DSCRs) in infrastructure project

finance, and to develop and calibrate a

model of DSCR dynamics.

For this purpose, we collect a large sample

of realised DSCR observations across a

range of infrastructure projects spanning

more than 15 years, representing the

largest such sample available for research

to date, and conduct a series of statis-

tical tests and analyses to establish the

most adequate approach to modelling and

predicting future DSCR levels and volatility.

Using these results, we build a model of

the conditional probability distribution of

DSCRs at each point in the life of infras-

tructure projects.

1.2 Motivation
1.2.1 A Structural Approach to Credit
Risk in Project Finance
In a previous paper (Blanc-Brude et al.,

2014), we show that debt service cover

ratios can play a pivotal role in the

modelling of credit risk in infrastructure

project finance.

The DSCR of a firm measures the amount of

cash available to make the current period’s

debt service. The higher the DSCR, the more

cash the firm has at its disposal to meet its

debt obligations in a given year. The DSCR is

written:

DSCRt =
CFADSt
DSBCt

(1.1)

where CFADSt is the cash flow available for

debt service, and DSBCt is the ”base case” or

current debt service at time t.

Because infrastructure project companies

are typically contractually barred from

raising additional funds (see Gatti, 2013,

section 7.2.3.11.2 on negative covenants),

the statistical distribution DSCR provides

a direct measure of their probability of

default.

A firm can be considered in default if its

DSCR falls below 1, (as long as it is computed

in such a way that it captures the total cash

available for debt service i.e. DSCRt = 1).

This provides an unambiguous definition of

the default threshold.

For project companies, the DSCR is often

also used to specify so-called ”technical”

default thresholds in debt covenants

(Yescombe, 2002), which provide additional

control rights to lenders, such as the

power to take over the project company,

or restructure its debt if its DSCR falls

below a pre-defined minimum level. In this

case the default threshold is known to be

DSCR = 1.x

Understanding the dynamics of DSCRs

thus allows implementation of the so-

called structural approach to credit risk,

since DSCR levels correspond to econom-

ically significant default thresholds, the

breach of which constitutes an event

of default by definition. Modelling the

default process from a cash flow perspective

also improves on the standard Merton

approach to credit risk, which relies on
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total asset and liability values to charac-

terise the mechanism leading to default,

thus requiring the use of valuation proxies

and making the definition of the default

point itself a matter of discussion.

Indeed, Blanc-Brude et al. (2014) show that

knowledge of DSCR dynamics is sufficient

to estimate the firm’s distance to default

(DD), which is the workhorse of the Merton

approach (Kealhofer, 2003).

Thus,

DDt =
1

σDSCRt
DSBC

t−1

DSBC
t

(1 − 1
DSCRt

) (1.2)

where σDSCRt is the standard deviation of

the annual percentage change in the DSCR
value.

In the same paper, Blanc-Brude et al.

(2014) show that DSCR dynamics are useful

to value the whole firm since, following

equation 1.1, the free cash flow of the firm

can be written:

CFADSt = DSCRt × DSBC
t (1.3)

The same relationship holds in expectation

and with regard to variance since DSBC
t is a

constant.

Hence, well-documented DSCR dynamics.

combined with future debt service obliga-

tions (which are a known constant at the

time of valuation), allow for the compu-

tation of the expected value and the

volatility of the firm’s free cash flow at each

point in the future. The discounted sum of

which is the expected firm value and its

volatility.

This is true of infrastructure projects

because they derive their value almost

entirely from future operating cash flows

and do not hold assets that have any

value outside of their operation such as

intellectual property or financial assets

i.e. infrastructure projects are highly

relationship-specific.

Using these ideas, Blanc-Brude et al. (2014)

develop a structural credit risk model for

project finance, adapting the Merton model

with debt restructuring post credit-event

(Black and Cox, 1976) to the cash flow

metrics described above. This allows for

the derivation of the full distribution of
future creditor losses and the computation

of standard credit risk metrics such as loss-

given default, expected shortfall or effective

duration.

1.2.2 The Need for an Advanced
Model
Unfortunately, we cannot simply observe

DSCR values to calibrate the credit risk

approach described above. Indeed, the DSCR

process in project finance is mostly undocu-

mented in empirical literature. While DSCR

information is routinely collected by the

creditors of infrastructure projects, this type

of data is typically confidential and not

available in large datasets.

The task of collecting DSCR data also runs

into one of the main limitations of empirical

research in long-term, private investments

such as infrastructure: for most observable

and investable instruments, a substantial

proportion of cash flows remains to be

observed today (see Blanc-Brude, 2014,
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for a detailed discussion of the limita-

tions of collecting infrastructure data). It

follows that empirical observations alone

are not sufficient to document the expected

behaviour of infrastructure project cash

flows over their entire investment life, and

a combination of ex ante modelling and

empirical observations is necessary.

Finally, private infrastructure investment

tends to be characterised by very large

individual investments, which almost neces-

sarily leads to poorly diversified portfolios.

This suggests that assuming the mean-

reversion of an investor’s infrastructure

debt portfolio may not be realistic, and

that idiosyncratic risk should be taken into

account.

In particular, individual infrastructure

investments can exhibit significant ”path

dependency” and investors cannot neces-

sarily take for granted the notion that they

are exposed to the ”median infrastructure

project.”

For both sets of reasons (data limitations

and the importance of firm-specific risk),

an adequate model of the DSCR should

be able to capture conditional dynamics

that explicitly integrate the different credit

”states” that an infrastructure project might

go through.

This can involve both learning from the

data as and when it becomes available, and

taking into account the path-dependency

of each instrument when estimating future

cash flows, instead of assuming a reversion

to the population mean.

Existing academic work on credit risk in

project finance and infrastructure remains

limited and static in nature. 2
2 - Esty (2001, 2002); Esty and
Megginson (2003); Blanc-Brude and
Strange (2007); Sorge and Gadanecz
(2008) study the determinants
of project finance loan spreads
and find that creditor-rights,
syndicate-structure, project leverage,
loan covenants, and country risk
affect credit spreads, while loan
maturity and size do not affect
project finance loan spreads the way
they affect corporate finance loans.
These analyses are static, and do not
seek to study the dynamic nature of
credit risk in project finance.

Cohort-based studies of default events such

as Moody’s (2014) and Standard and Poor’s

(2013) shed some light on the dynamics of

credit risk in project finance loans and report

observed events of defaults and reported

loss given defaults. These studies document

decreasing probabilities of default over

project life, and higher recovery rates for

project finance loans compared to corporate

finance loans.

However, they rely on a ”reduced form”

approach, representing credit risk as an

exogenous process that impacts firms

randomly, failing to capture conditionality

and state-dependence and effectively

assuming no persistence in the evolution of

an individual instrument’s credit risk. The

unconditional nature of such studies does

not allow a project’s credit risk profile to

be updated based on its past performance.

Credit risk is implicitly expected to mean-

revert irrespective of whether individual

projects out- or under-perform ex ante
expectations.

Still, one such study reports an average time

to emergence from default of around 2.3

years (Moody’s, 2012), indicating that once a

project is in default, it is likely to stay in that

state for several periods. This implies state

dependence in credit risk dynamics, which is

not fully captured by reduced form models.

At the opposite end of the credit research

spectrum, individual credit ratings do incor-

20 A Publication of the EDHEC Infrastructure Institute-Singapore



Cash Flow Dynamics of Private Infrastructure Project Debt - March 2016

1. Introduction

porate new information and aim to provide

a revised outlook on the credit quality of

rated instruments. They however fail to

capture any other trends present in a given

population of instruments, which could be

revealed by a more quantitative approach.

For the reasons above, in this paper

we endeavour to better document the

dynamics of DSCRs in infrastructure project

finance and build amodel of DSCR dynamics

using Bayesian inference to describe credit

state transitions and to estimate the mean

and variance of the DSCR in each state and

at each point in an instrument’s life.

Next, we discuss a series of hypotheses

about the distribution of DSCRs, drawn from

the economic and financial literature, and

that we will rely on to elicit informed priors

of DSCR dynamics.

1.3 Hypotheses
1.3.1 DSCRs and the Financial
Literature
The literature on the optimal financial

structuring of companies suggests a direct

relationship between the DSCR in project

finance and the underlying risk profile of the

firm.

In finance theory, the financial structure of

the firm is determined as an equilibrium

contract between various stakeholders of

the firm rationally acting in their self-

interest, under a given set of firm-specific

and economic conditions. As a result, the

project company and its financial structure

can be seen as an outcome of an optimi-

sation process that maximises some combi-

nation of the value of different stakeholders’

share of the project company.

Starting from the work of Modigliani

and Miller (1958) arguing the irrelevance

of financial structure for the value of

the firm, this literature has evolved to

show that financial structure can affect

firm value for several reasons, which may

include information asymmetries, agency

problems between stakeholders, differential

tax treatment of debt and equity payouts,

bankruptcy costs etc.

Thus, the question of the optimal financial

structure of a project company, as well

as the choice of project financing itself is

the outcome of this optimisation process

maximising firm value under a given set of

conditions.

Shah and Thakor (1987) demonstrate

the optimality of project financing under

asymmetric information for high risk

ventures, and show that more leverage is

optimal for such projects, as it increases the

tax-shield benefits in high-income states,

which are all the more all likely for higher

risk projects. Thus, in contrast to standard

corporate finance literature , they suggest a

direct relationship between project riskiness

and project leverage. Chemmanur and John

(1996) argue that project financing can be

optimal even in symmetric-information due

to control benefits, and highly leveraged

project financing is optimal for projects

with higher benefits of control.
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John and John (1991) and Flannery et al.

(1993) argue that project financing arrange-

ments result from the firm’s efforts to

minimise the impact of agency problems

(whichmay lead to underinvestment (Myers,

1977) or asset substitution (Jensen and

Meckling, 1976)).

This literature provides some possible

relations between a project’s characteristics

and its DSCR profile that can be empirically

tested with our data, and may provide

explanations for our findings. At least two

hypotheses of interest include:

l The existence of a relation between

project leverage and its DSCR;

l The existence of a relation between

project DSCR and the firm’s overall

riskiness.

Next, we formulate our main hypothesis

about the existence of homogenous families

of DSCR processes.

1.3.2 Families of DSCR Processes
In Blanc-Brude et al. (2014), we described

two generic and intuitive types of infras-

tructure project companies and called them

”contracted” and ”merchant”.

This distinction was informed by the casual

observation that the financial structure of

infrastructure project finance firms is often

such that it requires, at the onset, either a

rising or a flat ”base case” DSCR profile.

A rising DSCR profile would exhibit both

a rising mean and an increasing volatility

of DSCRt. That is, creditors would demand

a higher DSCR in the future to protect

themselves against rising expected volatility

of CFADS. Such projects would also have

longer ”tails” 3 and exhibit between 70% and
3 - The amount of time between the
original loan maturity and the end of
the project’s life, thus allowing higher
recovery rates in the event of restruc-
turing.

80% of initial senior leverage.

We argued that such structuring decisions

signalled infrastructure projects that were

exposed to commercial risks, such as a

power plants selling electricity at market

prices, and referred to these projects as

Merchant infrastructure.

Conversely, we argued that the decision to

structure a project while requiring a flatter

base case DSCR profile implied the expec-

tation of a much lower and constant condi-

tional volatility of cash flows. We observed

that projects with little to no market risk are

financed with a flat DSCR base case and also

have shorter tails and a higher level of senior

leverage, usually around 90%.

Contrary to projects with a rising DSCR,

which effectively de-leverage as their

lifecycle unfolds, projects with a constant

base case DSCR thus stay highly leveraged

until the end of the debt’s life (otherwise

their DSCR would rise). Examples of these

projects include social infrastructure

projects, such as schools or hospitals that

receive a fixed payment from the public

sector, or energy projects that benefit

from a long-term ”take-or-pay” purchase

agreement. We called these projects as

Contracted infrastructure.

Such base case DSCR profiles correspond

to what creditors require of each project in

the face of uncertainty about their ability
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to service their debt, hence they embody

creditors ’ ex ante views about the riskiness

of the firm and its debt.

In other words, we argued that the

combined decision taken by both creditors

and equity sponsors to structure infras-

tructure projects in a certain manner at

their onset is a quasi-price signal and can

be interpreted as revealing most infor-

mation available to the different parties at

the time of financial close, as well as their

risk preferences and market conditions at

the time.

In this paper, we determine statistically

whether realised DSCR dynamics fall

into categories determined by the distinc-

tions made above between Contracted

and Merchant infrastructure, as well as

exogenous conditions at the time of

financing and when the data is observed.

We then use our results to design a model

of DSCR dynamics.

1.4 This Paper
The rest of this paper is structured thus: in

Chapter 2, we describe the data collection

process and provide a number of initial

findings based on descriptive statistics, non-

parametric tests and regression analyses.

We conclude that the nature of the

data requires combining a dynamic state

transition model with a particle filtering

approach to infer the parameters of the

DSCR distribution in each state, at each

point in time.

Chapter 3 describes our modelling

approach, from the filtering of the DSCR

distribution parameters to the definition

of state transition probabilities between

different DSCR regimes. These ideas are

developed and implemented using our

dataset in Chapters 4 and 5, respectively.

Finally, in Chapter 6, we examine the impli-

cations of our findings in terms of condi-

tional credit risk measures in infrastructure

debt at the onset of a project and how itmay

be updated in time as realised DSCR states

become known for individual instruments.

Chapter 7 concludes.
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In this chapter, we describe the process

by which our DSCR dataset was created

in section 2.1 and provide a series of

descriptive statistics, non-parametric and

goodness-of-fit test results in section 2.2.

Next, section 2.3 describes a preliminary

analysis using standard linear regression

techniques, while section 2.4 discusses these

first results and the most appropriate way to

model DSCR dynamics going forward.

2.1 DSCR Sources and
Computations
Our dataset of realised DSCRs is built

using manually collected data and verified

from the audited statements of accounts

of several hundred project companies, as

well as DSCR data reported by private

contributors to the EDHEC Infrastructure

Investment Database. 4
4 - See edhec.infrastructure.institute
for more details.

The data obtained from company filings

includes information reported in companies’

balance sheets, income and cash flow state-

ments, and allows DSCRs, leverage and

other financial variables to be computed

in each period. Privately contributed data

comes from creditors and investors who

have access to realised DSCR data and

information about realised and future debt

service.

Approximately 90 per cent of the total

sample was thus obtained from audited

accounts, while the remainder was sourced

from private contributors. For the purpose

of describing DSCR dynamics, the dataset

also includes individual project size,

leverage, industrial sectors, countries,

revenue risk family (as discussed in

chapter 1) and date schedules including

financial close and construction completion

dates.

DSCRs are thus either reported directly or

computed using a combination of cash at

bank, cash from operating activities, cash

from investing activities and cash from debt

and equity drawdowns in each period. The

data is reported annually.

Project companies reporting their annual

accounts do not consistently provide cash

flow statements, hence cash flows from

operations, investment and financing

activities are estimated employing the

”indirect method”, which employs changes

in accrual accounts and operating profit

to estimate cash flows from operations.

Similar approaches were employed for the

cash flows from investing and financing

activities. Further details of this procedure

are provided in section 8 of the Appendix.

Whilst the application of the indirect

method is straightforward, issues did arise

when applying this estimation procedure.

These included changes in accounting

standards, annual reports with balance

sheets not balancing, notes to financial

accounts not reconciling with the balance

sheet, and the inconsistent application of

accounting standards across similar projects

at the same time.

When these and similar issues were encoun-

tered, judgement was applied to ensure that

the resulting cash flow statements were

consistent with an understanding of the
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underlying project’s cash flows. To ensure

consistency, the cash flows for all projects,

even projects that provided a cash flow

statement, were estimated in a consistent

manner.

Having estimated the cash flows, the

variables of interest in this paper include

cash flow available for debt service (CFADS),

and debt service.

2.1.1 Computing DSCRs
We argued in section 1 that DSCRs provide

key insights into the credit risk of infras-

tructure projects, as they correspond to

an economically significant measure of the

ability of the firm to service its debt at each

point in time. In practice, however, DSCRs

may not always be calculated to reflect all

the cash available for the debt service, and

can fail to provide economically meaningful

information.

Some of the commonly used definitions in

the literature (Ciochetti et al., 2003; Harris

and Raviv, 1990) use a project’s operating

income to compute the DSCR. However,

such a definition can under/over-estimate

the cash flow available for debt service in

practice.

For instance, if a project is drawing down

additional debt to make its debt payment,

then the cash available for debt service will

exceed operating income. Similarly, if the

project is investing capital in physical assets

then the cash flow available for debt service

will be less than its operating income.

In an effort to pinpoint a meaningful proxy

of credit risk, we examine several possible

definitions of the DSCR of the firm: we

compute the DSCR under three different

definitions

DSCR1 =
Cbank + Cop + CIA

DSsenior
(2.1)

DSCR2 =
Cbank + Cop + CIA + Cdd

DSsenior
(2.2)

DSCR3 =
Cbank + Cop + CIA + Cdd − Cinv

DSsenior
,

(2.3)

where Cbank, Cop, CIA, Cdd, and Cinv denote

cash at bank, cash from operating activ-

ities, cash withdrawal from investment

account, cash from debt drawdowns, and

cash invested physical investments, respec-

tively.

For all three definitions DSsenior denotes the

total debt service, and it consists of interest

and principal payments of senior loans and

bonds. Figure 8 shows histograms of our

dataset for each definitions of the DSCR.

The first definition only takes into account

the beginning-of-period cash at bank,

and any amount withdrawn from the

investment account in computing the

CFADS. This definition, however, under-

estimates the DSCR in the first few years

of the project, mostly during construction

years, when the project company may

have negative operating cash, and may be

making debt payments by drawing down

more debt.

The second definition remedies this short-

coming by adding the debt drawn in that

period to the CFADS calculation. This second
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definition, however, may overestimate the

CFADS if a significant fraction of the

amount of debt drawn is invested into the

project.

Therefore, we subtract the project

investment from the CFADS calculation in

the third definition. This third definition

is the most reasonable from an economic

standpoint, and we use it as our default

definition in what follows. 5
5 - We also used the following
three definitions of the DSCR:
DSCR4 =

Cop+CIA+Cdd−Cinv
DSsenior

,

DSCR5 =
Cop

DSsenior
, and

DSCR6 =
Cbank+Cop

DSsenior
, but DSCR3

remained the most economically
meaningful definition.

2.2 Descriptive Statistics
In this section, we report summary statistics

for realised DSCR observations under

our preferred definition of the DSCR, as

discussed above.

Our data sample consists of a total of

207 projects spanning the two revenue risk

families (contracted andmerchant), in seven

sectors 6, from the early 1990s to 2015, as
6 - Transportation, Telecoms, Oil &
Gas, Industrial, Government Services,
Environmental Services and Energy

Figure 9 illustrates. However the sample is

limited in size until the late 1990s and

incomplete for 2015, and so we report

results for the 1999-2014 period in the rest

of this paper.

Table 1 presents a breakdown of the

firms reporting their DSCR observations by

revenue risk family, sector and region. All

data for contracted infrastructure is sourced

from the UK, while DSCR data for merchant

infrastructure represents a combination of

UK, US and a number of other OECD

countries. 7 Wenote that contracted projects
7 - These countries are, Austria, the
Virgin Islands (US), France, Finland,
Slovakia, Poland, Germany, Ireland,
Canada and the Netherlands

have a lower standard deviation, skewness,

and kurtosis of their realised DSCR than

merchant ones.

RawDSCR data contains some large outliers,

especially on the upside. These often arise

during the early years of the project life

when bonds are used to finance projects. The

issuing of bonds significantly increases the

CFADS in that period. The proceeds of the

bond issue are only invested in the physical

capital in subsequent years. Other instances

of high DSCRs occur in the last years of

certain loans, when very little outstanding

debt remains to be paid relative to the firm’s

free cash flow.

This makes mean and standard deviation

calculations less reliable as they are signif-

icantly affected by such large outliers.

We also note that for such high values of

the DSCR, the ability of the firm to repay its

debt in the current, or the next period must,

ceteris paribus, be very close to certainty.

We return to this notion of a ”safe” state

for project debt in the conclusion of this

chapter and use it in the rest of the paper.

For the purpose of describing the data,

we compute mean and standard deviation

of the DSCR between the 10th and 90th

quantiles of the empirical distribution. This

allows the effect of outliers to be avoided,

while still observing the volatility in the

DSCR data around its median level, as illus-

trated by Figure 10.

Next, Table 2 shows the number of

DSCR observations, median and standard

deviation in investment time after opera-

tions start (post-construction). Again,

contracted infrastructure projects exhibit a
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Figure 8: DSCR histograms for the three definitions of the DSCR given in Equations 2.1 to 2.3, respectively, over the period 1984-2015.
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Table 1: DSCR summary statistics by revenue risk family and region

Obs 1st and 2nd Moments Higher Moments Extremes
N Median Mean SD Skew Kur 10th-Q 90th-Q

Contracted 1,001 2.269 2.311 0.851 1.109 4.618 1.406 5.351
Merchant 428 2.015 2.987 3.533 3.423 16.664 1.071 23.824
UK 1,403 2.383 2.692 1.738 1.974 7.131 1.394 10.918
US 121 1.480 1.177 0.218 −0.086 3.051 1.258 2.000
Other 11 1.174 1.898 2.230 2.471 7.114 1.074 10.364
Total 1,429 2.225 2.350 1.128 1.557 5.315 1.304 6.480

more stable median and standard deviation

of the DSCR over time than merchant ones.

Tables 17 in the Appendix provide a more

detailed breakdown of DSCR statistics by

family of revenue risk. DSCR observations

for contracted projects not only have a

lower standard deviation than merchant

ones, they also possess thinner tails, as

evidenced by their low values for the 80th

and 90th quantiles. The DSCR distribution
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Figure 9: DSCR and cash flow observations by reporting firm (investment start year=financial close)
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Table 2: Post-construction realised DSCR statistics, 1999-2014.

Contracted Merchant
Year N Median SD N Median SD
1 108 2.397 0.933 45 2.130 2.108
2 121 2.255 0.479 54 1.836 0.897
3 121 2.259 0.380 54 1.828 0.491
4 115 2.058 0.300 48 1.749 0.660
5 112 2.148 0.292 42 1.685 0.517
6 97 2.229 0.250 35 1.994 0.985
7 80 2.248 0.332 30 1.732 0.921
8 72 2.209 0.375 22 2.483 2.215
9 50 2.374 0.382 18 2.139 2.075
10 36 2.289 0.427 14 1.855 0.850
11 25 2.279 0.936 11 1.481 1.112
12 15 3.109 0.846 9 1.830 1.435
13 13 2.498 1.494 5 2.347 0.365
14 10 3.385 1.807 9 2.223 0.605
15 8 5.279 1.626 4 16.550 18.796
16 6 5.227 0.501 5 2.812 0.734
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Figure 10: Post-construction realised DSCR for contracted and merchant projects, with (left panel) and without outliers (right panel).
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for contracted projects tends to be more

concentrated around its median.

In both types of projects, we note that

DSCRs tend to increase during the

investment life. This effect is partly

attributable to the fact that the projects

financed in earlier periods tend to have

higher realised DSCRs and partly because

DSCRs tend to increase during investment

life. We return to these two effects in

section 2.3 when we conduct panel

regressions with fixed time-effects.

2.2.1 Difference of mean and variance
between DSCR families
Next, we test whether DSCRs follow similar

distributions in contracted and merchant

infrastructure. Figure 11, which shows

empirical densities of realised DSCRs for the

two revenue risk families, suggests that this

is not the case.

Table 3 provides the results of non-

parametric tests of the null hypothesis

that both contracted and merchant infras-

tructure have the same mean and variance.
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Figure 11: Empirical densities of DSCRs in contracted and merchant infrastructure, 1999-2014.
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Figure 12: Lognormal fit to the DSCR distribution for contracted projects.
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The resulting Mann-Whiteney, Bartlett, and

Kolmogorov-Smirnov test statistics lead to

the conclusion that the null hypothesis can

be rejected with a high degree confidence

(low p-value) as a result, we conclude

contracted and merchant DSCR processes

possess different mean and variance

processes.

2.2.2 Goodness-of-fit
Next, we explore the goodness-of-fit of

the data with respect to standard proba-

bility density functions. The most natural
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Figure 13: Lognormal fit to the DSCR distribution for merchant projects.
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Table 3: Non-parametric test results for the difference in mean and variance between the contracted and merchant DSCR sub-samples.
Mann-Whitney, Bartlett, and Kolmogorov-Smirnov tests are non-parametric tests for the equality of means, variances and distributions of two
samples, respectively.

Mann-Whitney Bartlett Kolmogorov-Smirnov
Statistic p-value Statistic p-value Statistic p-value

Contracted-Merchant 186,065 0.001 1,169 0.000 0.18256 0.000

Table 4: Estimated DSCR distribution parameters and the corresponding p-values for the chi-squared goodness-of-fit test. μ and σ denote the
estimated log-mean and log-standard deviation of the lognormal distribution.

μ σ χ2 fit
Estimate Error Estimate Error Mean SD Statistic p-value

Contracted 0.74 0.010 0.289 0.007 2.186 0.644 15.011 0.682
Merchant 0.55 0.019 0.316 0.014 1.815 0.589 9.946 0.448

Table 5: Quantile threshold of observed DSCRs below which the data can be fitted to a lognormal distribution, at each point in investment time

Contracted Merchant
Quantile DSCR Statistic p-value Quantile DSCR Statistic p-value

1 0.900 8.184 0.064 0.814 0.850 11.838 0.070 0.706
2 0.900 5.610 0.076 0.609 0.850 6.356 0.132 0.162
3 0.900 3.975 0.077 0.589 0.850 3.885 0.068 0.746
4 0.900 3.488 0.060 0.869 0.850 5.117 0.046 0.683
5 0.900 4.260 0.062 0.839 0.850 3.346 0.082 0.514
6 0.900 3.434 0.101 0.255 0.850 5.411 0.038 0.799
7 0.900 4.342 0.132 0.617 0.850 7.018 0.156 0.259
8 0.900 4.302 0.120 0.214 0.850 9.975 0.067 0.753
9 0.900 3.719 0.114 0.246 0.850 7.736 0.066 0.781
10 0.900 6.131 0.059 0.874 0.850 8.163 0.108 0.195
11 0.900 6.296 0.049 0.971 0.850 6.436 0.124 0.395
12 0.900 6.231 0.090 0.386 0.850 10.069 0.066 0.778
13 0.900 7.990 0.064 0.802 0.850 6.178 0.055 0.926
14 0.900 12.833 0.071 0.702 0.850 9.222 0.076 0.606
15 0.900 9.939 0.079 0.562 0.850 10.341 0.154 0.277
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candidate for the DSCR distribution is

the exponential family, which includes

lognormal, gamma, weibull, and exponential

distributions. This is because the DSCR

observations mostly lie between [0,∞],

with a uni-modal distribution and with a

peak around 2.

However, due to heavy right-hand tails

in realised DSCR observations, neither one

of these distributions achieves a high

goodness-of-fit when fitted over the whole

sample. Tables 17 in the appendix confirms

that the 10th, 20th and 50th quantiles of

our DSCR observations lie much closer to

each other than the 50th, 80th, and 90th

quantiles.

This is, again, a reflection of the fact that

DSCR can take very high values that appear

to suggest an altogether different (and

lower) level of credit risk in infrastructure

projects in some states of the world.

Since our aim is to build a parsimo-

nious model of DSCR dynamics, we test

different thresholds below which the data

does exhibit a high goodness-of-fit with

exponential functions, in particular with

the Lognormal function, since its calibration

is analytically tractable using Bayesian

inference. 8
8 - The likelihood of the data is
conjugate with the prior distribution
of its parameters.

Table 4 shows that truncating the sample at

the 90th and 85th quantiles for contracted

and merchant families, respectively,

achieves a very high goodness-of-fit with

the lognormal density function i.e. the

log of DSCR observations at each point

in time follows a Gaussian process. As

Table 5 illustrates, below these thresholds,

we cannot reject the null hypothesis that

DSCRs follow a lognormal distribution at

each point in time t in the investment

life. Figures 12 and 13 also confirm a high

degree of Gaussian fit for logs of realised

DSCR values up the relevant thresholds.

It follows that, as originally suggested,

but not documented in Blanc-Brude et al.

(2014), we can reasonably assume that

DSCRs in infrastructure project finance
follow a lognormal process.

Next, we examine the role of several

candidate factors explaining DSCR

variability.

2.2.3 DSCR determinants
Sectors
Table 6 breaks down DSCR observations by

sectors and revenue risk family. Contracted

infrastructure has a lower volatility than

merchant projects irrespective of the

sector. However, some variation in the

level of volatility of realised DSCR exists

within families, across different sectors.

For instance, the median and standard

deviation of the DSCR is higher for the

transport sector than the social infras-

tructure sector, for both contracted and

merchant projects.

Overall, industrial sectors seem less relevant

than revenue risk families to explain

DSCR levels and volatility. We test for the

statistical significance of sector variables

in section 2.3 using panel regression

techniques.
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Table 6: Realised DSCR statistics post-construction by sectors for contracted and merchant infrastructure, 1999-2014

Contracted Merchant
Sector N Median SD N Median SD
Commercial and Industrial 22 2.638 0.279 – – –
Energy 24 1.719 0.357 258 1.644 0.579
Environmental Services 6 1.461 0.010 8 2.597 0.854
Government Services 820 2.207 0.349 2 1.393 –
Oil and Gas 7 3.527 0.217 57 3.738 7.168
Telecom 9 2.655 0.861 9 2.968 1.182
Transport 113 3.133 1.423 94 2.771 1.796

Figure 14: Scatter plots of realised DSCRs, project leverage and size
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Table 7: Leverage and project size by business model, for all observations over the period of 1999-2014.

Contracted Merchant
N 10th-Q Median 90th-Q N 10th-Q Median 90th-Q

Leverage 1,255 0.659 0.848 0.954 325 0.090 0.581 0.916
Size 1,301 9.532 10.823 12.543 819 7.806 10.445 12.823

Table 8: Realised DSCR statistics post operation start by project leverage and size for Contracted and merchant projects, 1999-2014.

Contracted Merchant
N Median SD N Median SD

Leverage Below Median 509 2.284 0.521 227.000 2.814 3.136
Leverage Above Median 438 2.278 0.308 37.000 2.382 0.624
Size Below Median 491 2.231 0.475 127.000 2.727 1.280
Size Above Median 456 2.307 0.354 171.000 2.794 2.809

Leverage and size
Table 7 shows the impact of project leverage

and size for the two families. Project size is

proxied by the maximum of the total value

of the project’s assets over the project’s life,

and leverage is computed as the maximum

of the ratio of total outstanding senior

liabilities to total assets over the project’s

life.

While project size has roughly similar

distributions for the two families, project

leverage is very different. Contracted

projects not only have a higher median

leverage compared to merchant projects,
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their leverage is also more concentrated.

This finding is in-line with the hypothesis

put forward in section 1, according to which

in project finance, high leverage is generally

associated with low asset risk, and therefore

that contracted infrastructure should, on

average, possess a higher leverage than its

merchant counterpart.

Table 8 looks at whether realised DSCRs vary

systematically by project leverage and size

and suggests that in the case of contracted

infrastructure, leverage and DSCRs are only

related insofar as higher leverage tends to

be associated with lower standard deviation

of realised DSCR. Median realised DSCRs

are otherwise unchanged by the relative

change in leverage for contracted infras-

tructure. The effect of size on realised DSCRs

in contracted projects is more ambivalent

since larger projects tend to have higher but

less volatile realised DSCRs.

This can also be seen in Figure 14, which

shows a negative relation between the

DSCR and leverage, and a slightly positive

relation between the DSCR and total assets.

This suggests that DSCRs have a negative

relation with project leverage, and that

highly leveraged contracted projects tend to

have the lowest realised DSCRs.

For merchant infrastructure, Table 8

shows that both higher leverage and size

seem to correspond to higher levels of

realised DSCRs. Again, high leverage is also

associated with much lower volatility of

DSCRs, suggesting a direct (and inverse)

relationship between leverage and credit

risk in project finance, as previously argued

in the literature.

Next, we conduct more robust tests using

regression analysis.

2.3 Regression analysis
We now use regression analysis to further

investigate the explanatory power of

different variables in determining the level

of realised DSCR. We consider determinants

such as revenue risk family, sector, region,

leverage and size, financial ratios and

project and calendar years.

2.3.1 OLS Model
From prior knowledge and the descriptive

statistics presented above, we know that

DSCRs have dynamic profiles in project

investment time, while they may be

impacted in the cross-section by project-

specific or macro factors. We first test

a simple ordinary-least squares (OLS)

regression model using dummy variables

for project time ”buckets” (each bucket

corresponding to a 5-year period) and

calendar year dummies to proxy for the

business cycle.

Table 24 in the appendix reports the results.

We find that in the contracted family,

calendar years have no statistically signif-

icant impact on realised DSCRs whereas

they do in merchant projects, even though

this is not true across all sectors, with energy

and oil & gas DSCRs apparently the most

affected by the business cycle. In these two

sectors, realised DSCRs also exhibit statisti-
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cally significant and continuous growth in

project time (buckets).

Across the board, leverage is a significant

and negative explanatory factor for the level

of realised DSCR, which confirms our initial

hypothesis that the decision to structure

projects with higher leverage, signals lower

asset risk.

Indeed, while we argued that the initial

required or ”base case” DSCR is low (leverage

is high) when creditors anticipate low credit

risk, a high realised DSCR suggests that the

investment turns out to be highly capable

of repaying its creditors, especially as these

high realised DSCRs are associated with low

realised volatility of DSCRs, which is the case

for contracted infrastructure.

We also report in Table 9 that our DSCR

data exhibits non-constant variance

(the Breush-Pagan test rejects the null

hypothesis of homoskedasticity), significant

auto-correlation (the Durbin-Watson test

rejects the null hypothesis of no autocor-

relation in the regression residuals) and

non-normal residuals (The Shapiro test

rejects the null of Gaussian residuals), all

of which suggests that linear models are

ill-suited to model our DSCR data.

2.3.2 Panel regressions
Next, to control for the impact of a

project time separately, we fit a panel

regression model using fixed effects for

project time 9 while calendar years and
9 - i.e. The model fits a different
intercept for each investment year, as
opposed to each firm

sectors are controlled for in the cross-

section.

In the most interesting specification,

reported in the Appendix in Table 25, we

use initial investment calendar years as

explanatory variables in the cross-section

instead of contemporary year dummies,

which greatly improves the power of the

model in the case for the merchant family

(50% adjusted-R2), suggesting a significant

impact of market conditions at the time

of financing in setting average DSCR

trajectories through the initial choice of

financial structuring. The impact is much

more muted (i.e. not statistically significant

in most years) in the case of the contracted

family.

Fixed project year effects are reported in

Table 26 for both contracted and merchant

projects. Contracted infrastructure tends to

have constant project year effects with an

average realised DSCR above 2 (exp(0.8))
for the first 15 years of investment, rising

towards the end of the period. Merchant

projects exhibit a more dynamic and much

higher level of average realised DSCR in

project time, oscillating between 2.7 and 8

on average.

Finally, we fit the same project time fixed

effect panel model replacing calendar

year effects with financial ratios extracted

from the accounts of the relevant firms.

Table 27 in the appendix reports the

impact of profit margins, asset turnover

(revenue/total assets ratio), cash return on

total assets (operating cash/total assets),

capex coverage (operating cash/capital

expenditures), and capital expenditures to

revenue ratio on realised DSCR levels, while

Table 28 reports the year fixed effects.
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Table 9: Test results for heteroskedasticity, autocorrelation and residuals normality for log(DSCR) ordinary least squares regression.

Test Statistic p-value
Heteroskedasticity Breusch-Pagan 358.305 0.000
Autocorrelation Durbin-Watson 0.857 0.000
Normality Shapiro 0.695 0.000

Profit margin, asset turnover, and cash

return on total assets turn out to be highly

significant with positive coefficients for the

contracted family, and profit margin and

asset turnover turn out to be significant

for the merchant family. We note the large

coefficient for profit margin in contracted

infrastructure.

Indeed, the DSCR for contracted projects

may be more sensitive to changes in

profitability (such as the profit margin) as

revenue is largely fixed (contracted), while

for merchant projects higher profitability

may come at the expense or be the result

of lower aggregate revenue leading to

cost cutting, leaving the realised DSCR

unchanged.

We also note that once we control for

annual changes in financial ratios, project

year fixed effects cease to be significant

except for a rise in realised DSCRs in the

later years in the sample of contracted

projects and in the earlier years in merchant

projects. This is best explained by the fact

that the panel is not balanced and suggests

that older investments had higher average

DSCRs in the contracted family, while more

recent merchant projects also tend to have

higher DSCRs than the sample average in

each investment year.

2.4 Conclusions
In conclusion, the key findings drawn from

the descriptive statistics and analysis are as

follows:

1. The two DSCR families, contracted and

merchant, exhibit different distribution

functions, with contracted infrastructure

exhibiting a lower DSCR mean and

volatility;

2. Realised DSCRs exhibit an investment life

dynamic in both families, and tend to go

up over the life of the project. This trend

is much more pronounced for merchant

projects;

3. DSCR realisations up to a fixed quantile

can be modelled with a lognormal distri-

bution for each family;

4. Realised DSCRs exhibit statistically

significant serial auto-correlation;

5. Regression residuals for realised DSCRs

exhibit serial correlations, heteroskedas-

ticity, and non-normality, indicating

the need for a time-varying, stochastic

model of the DSCR.

Clearly, descriptive statistics and linear

regression models provide some insights

about the determinants of the DSCRs, but

also fail to capture DSCR dynamics in full.

This requires taking an auto-regressive and

heteroskedastic process into account. Next,

we discuss our approach to build a powerful

model of DSCR dynamics.
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In this chapter, we describe our proposed

approach and methodology to model the

DSCR dynamics of infrastructure projects

using available realised DSCR observations.

In line with the credit risk framework

defined in Blanc-Brude et al. (2014), we

aim to characterise the expected value and

conditional volatility of DSCRs in infras-

tructure projects at each point in their

investment life. Indeed, as per Equation 1.2,

the mean value and the standard deviation

of the DSCR at time t are sufficient to

compute the distance to default of an

infrastructure project.

In what follows, we characterise DSCR

dynamics as a ”latent process” i.e. an

unobservable vector of the DSCR distri-

bution parameters at each point in time,

and show that we can estimate the value of

these parameters using a filtering approach

not unlike the the ones used to determine

the physical coordinates of a moving object

(Section 3.1). Next, we use a simple state-

transition model to represent the full path-

dependency of this process, taking into

account the possibility of a prolonged state

of default as well as a ”safe” state, for very

high values of the DSCR (Section 3.2).

Next, we detail these two dimensions of

our approach before implementing them in

turn using our dataset in Chapters 4 and 5,

respectively.

3.1 The DSCR as a Latent Process
3.1.1 Intuition
The conclusions of chapter 2 helped confirm

our intuition that DSCRt are serially corre-

lated and can change its risk profile during

the investment lifecycle of infrastructure

projects. In other words, the expected value

E(DSCRt) and the volatility σ2DSCRt are

partly determined by the values of the

same quantities at time t − 1, and partly

by ”innovations” (incremental changes) or

shocks happening at time t.

Hence, the ex post trajectory of individual

projects could correspond to any combi-

nation of high/low E(DSCRt) and high/low

σ2DSCRt, and the DSCR of populations of

projects would equally reflect the weighted

trajectory of their constituents in a DSCRt
mean/variance plane, as illustrated by

figures 15 and 16.

However, the true coordinates (m,σ2) of

the DSCRt process are unobservable (it is

a latent process) and can only be imper-

fectly measured by observing DSCRs and

their realised mean and variance (which are

themselves noisy because of measurement

errors).

This is compounded by the fact that

infrastructure projects financed today, may

not follow the exact same future paths

as projects financed two decades ago

(for instance because choices of financial

structure are influenced by market condi-

tions and prudential regulation), and by the

paucity of available historical data, so that

realised data cannot be assumed to predict

the behaviour of new projects very well. In
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Figure 15: Idealised DSCR trajectory of a broad family in the DSCR mean-variance plane.
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Figure 16: Example DSCR trajectories of individual projects in the DSCR mean-variance plane.
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other words, we can only learn so much

from realised DSCR data.

Recognising that our knowledge of DSCRt
dynamics remains conditional, we aim to

build a model of the future mean and

volatility of DSCRt that is capable of both

integrating past information about realised

DSCRs, without making static assumptions

about the underlying process, and learning

from new observations as they become

available.

Numerous models exist that aim to

determine the position of a dynamic system

and, based on the latest round of observa-

tions (measurements), to predict where it

will be positioned in future periods. Such

systems are frequently applied in robotics,

aero-spatial tracking, and chemistry.

Here, we apply such approaches to estimate

the position of a given infrastructure project

in a mean/volatility DSCR ”plane” at a given

point in time, and to predict its position —its

DSCRmean and variance ”coordinates” so to

speak —in the following periods.

Next, we discuss how ”particle filtering”

models allow us to estimate and predict
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DSCR dynamics for individual projects or

families of projects.

3.1.2 Particle Filtering
We aim to build a time-varying model

of the DSCR mean and volatility but can

only observe a limited number of realised

DSCR observations especially relative to the

number of relevant control variables.

Filtering models are a form of signal

processing and aim to arrive at some best-

estimate of the value of a system, given

some limited and possibly noisy measure-

ments of that system’s behaviour.

Latent Process
Say that we can observe certain data Y
(here, realised DSCRs) and, as illustrated

by figure 17, this ”observation process”

is related to hidden variables (the latent

process X) by some known functional form

and the dynamic system describing the

evolution of the latent process is known

probabilistically.

Here, the latent state of the DSCR system at

time t is simply the vector of parameters Xt
of its distribution at time t and the latent

process can be written:

Xt = f(Xt−1) +Wt (3.1)

This is known as a Markov process and

the state equation of the system. Wt is

a ”noise” of the Markov process, indicating

potential innovations or shocks in the

process outcome, alongside the dynamic

imposed by f(.), a known function. Next, the

observation process is formally written:

Yt = g(Xt) + Vt (3.2)

which is known as the observation
equation, with Vt, the noise of the obser-

vation process and g(.), also a known

function.

The filtering problem consists of

estimating the values of Xt+τ given

the noisy measurement Y at all

times t, t + 1, . . . , t + τ, that is,

Pr(Xt+τ|Yt+1, Yt+2, . . . Yt+τ).

In other words, in this very general setting,

as long as we can relate our observations

in each period to some function of the

system’s state, as well as the current state

estimate to its previous realisation, we can

aim to estimate the parameters that define

this auto-regressive relationship.

Bayesian Parameter Estimation
Given our modelling objectives are to

accommodate small samples, avoid

assuming static values for the DSCRt distri-
bution parameters, and be able to revise

any existing parameter estimates once

new data becomes available, this process

is best estimated iteratively using Bayesian

inference techniques.

Bayesian inference allows the parameters

of the distribution of interest (here the

DSCR at time t) to be treated as stochastic

quantities, thus reflecting the limits of our

current knowledge of these parameters, or

their stochastic nature.

Thus, each parameter of the DSCR distri-

bution is given a distribution of its own and

the variance of, for example, the parameter

representing the volatility of DSCRs, repre-
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Figure 17: An example of transitions between Markov states. The true state takes values of X1 , X2 , X3 , etc while. Y1 , Y2 , Y3 are noisy observations of
the true state at times t1 , t2 , t3 , etc.

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y5 Y5

sents our current uncertainty about the true

value of this parameter.

In this setup, we first build a prior distri-

bution of the DSCR process, given the

current state of knowledge about infras-

tructure debt investments. In each period

for which DSCR data becomes observable,

this prior knowledge is updated using

Bayesian inference techniques, which we

discuss next, to derive a more precise

posterior probability distribution of DSCRt.

In this case, based on the findings reported

in chapter 2, we can assume that the DSCR

process follows a lognormal distribution

in each period (we address the treatment

of outliers in realised DSCRs in the next

section).

That is,

log(DSCRt) ∼ N(mt, pt), (3.3)

where mt is the location parameter of the

distribution, and pt its precision, which is

defined as the inverse of its variance, or pt =
1/σ2.

Hence, the latent state of the DSCRt process
is Xt = (mt, pt), and the state equation is

written:

Xt−1 = Xt +Wt (3.4)

In other words, the parameters mt and pt
of the DSCRt process are assumed to be

autoregressive with one lag and innovation

or disturbance Wt.

In a Bayesian setup, unknown paramaters

(whether they are stochastic or not) are

given a probability distribution. Here, mt,

the mean of the lognormal DSCRt process

follows a normal distribution of meta-

parameters μt and δt, and the precision pt of
the DSCRt process follows a gamma distri-

bution of meta-parameters α and β. That is,

mt ∼ N(μt, δt) (3.5)

pt ∼ Γ(αt, βt) (3.6)

The state vector Xt is written Xt =

((mt|μt, δt), (pt|αt, βt)).

As is well documented in the literature,

under such parameterisation the prior

distribution of the parameters is conjugate

(has the same functional form) to the

likelihood of the data, which makes imple-

menting Bayes rule straightforward and

computationally easy.

Indeed, the conjugate prior of a Lognormal

process is a Gamma-Normal distribution

(Fink, 1997), that is, as a function ofm and p,
the likelihood function is proportional to the

product of a Gamma distribution of p (with
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parameters a and b) with a Normal distri-

bution (with mean μ and precision δ) of m
conditional on p.

Next, if the realised DSCR data Y follow a

lognormal process of mean m and precision

p, its likelihood function is given by:

L(m, p|Y) ∝ pN/2e(−
p
2

∑N
n=1(log Yn−m)2)

(3.7)

where N is the number of observations.

This relationship relates observations Y to

the latent state X.

Following Fink (1997), the sufficient

statistics (required data) to update a prior

distribution are the number of obser-

vations N, Ȳ =
∑N

n=1 ln(Yn)
N , and SS the

sum of squared deviation of the log

data about m; and the joint posterior

distribution Pr(m+, p+) is given by the

meta-parameters :

α+ = α +
N
2

β+ =

(
1
β
+
SS
2
+

δN(Ȳ− μ))2

2(δ + N)

)−1

μ+ =
δμ + NȲ
δ + N

δ+ = δ + N (3.8)

Thus, each time a new set of DSCR data is

observed, we know N, Ȳ and SS, and the

posterior values of α+, β+, μ+ and δ+ can

be computed according to equation 3.8, and

the posterior parameters m+ and p+ of the

distribution of DSCRt derived, incorporating
prior knowledge and the new information.

Particle Filtering
Given any initial belief about the mean

and variance of DSCRt0 — drawn for

example from the historic project family

mean and variance — and assuming a

lognormal DSCR process, deriving the prior

values of the state vector meta-parameters

Xt0 = ((μ−
t0 , δ

−
t0 |m

−
t0 ), (α

−
t0 , β

−
t0 |p

−
t0 )), is a

matter of simple arithmetic, as described in

section 8.4 in the Appendix.

Next, given the prior distributions of mt0

and pt0 , we make 1,000 draws for each

parameter to generate 1,000 ”particles” i.e.

each particle i is a pair (m,p), that is, a

possible occurrence of the DSCR state Xt0
given the meta-parameters.

We then observe the data (realised DSCRt1 )
in the first investment period and compute

the likelihood Li for each on of the 1,000

particles given the data, as per equation 3.7.

Normalised likelihood scores wi
10 are then

10 - wi =
Li−min
max−min

used to rank individual particles, which are

then resampled by weight i.e. each particle

is duplicated 1000 × wi times and only the

first 1,000 particles by rank are kept in the

sample. Thus, the resampled particles are

updated according to how likely they are to

be the true mean and variance of the DSCR

given all the DSCR observations. And the

distribution of DSCRmean,m, and precision,

p, is updated in accordance with 3.8.

The resulting posterior parameters of the

DSCR distribution at time t1 then become

the prior estimates of the DSCR process at

time t2, before any observations are made
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Figure 18: Genearting particles using prior knowledge to estimate DSCRt mean and variance using a particle filter.
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Figure 19: Updating DSCRt mean and variance estimates using resampled particles.
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at that time, and the filtering and updating

process starts again.

Figures 18 and 19 show this procedure

schematically. In Figure 18 particles are

generated based on the prior distribution of

m and p. These particles are then resampled

using the likelihood of observed DSCR in

Figure 19, and the particles with higher

likelihood of explaining the observations get

higher weight. The resampled particles then

provide the updated estimate of DSCRmean

and variance.

Hence, whether we are observing realised

DSCRs for a whole sample of projects or for

a single one, we can estimate the current

and future trajectory of the DSCR process

in a mean/volatility plane. We return to

and implement this estimation approach in

chapter 4.
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First, we discuss our proposed treatment of

the DSCR process when it ceases to follow a

lognormal function.

3.2 DSCR States
3.2.1 Intuition
As well as having time-varying dynamics,

we noted in chapters 1 and 2 that projects

could stay in default for several periods

and that, at the opposite end of the

scale, DSCRs could take some very high

values, suggesting virtually zero probability

of default.

Moreover, these high values were found to

curtail the goodness-of-fit of a lognormal

density function when applied to the data,

whereas both contracted and merchant

DSCRs could effectively be considered

lognormal if the sample was truncated at a

threshold DSCR corresponding to the 90th

and 85th quantile, respectively.

These findings suggest a simple a state-

transition model of the DSCR process with

three distinct states:

1. a default state ”d” in which DSCRt < 1,

2. a safe (i.e. risk-free) state ”s” in which

DSCRt > DSCR, and
3. a risky state ”r” in which 1 < DSCRt <
DSCR.

An example path from state to state

followed by an individual project is illus-

trated by figure 20.

Hence, once a project’s DSCR breaches

the hard default threshold represented by

DSCRt = 1, it enters the default state,

which it may or may not leave after a

number of periods. In this state, creditors

have the option to take over the firm or

restructure debt, and they can maximise the

value of exercising this option depending

on the size of their exit and restructuring

costs. They may decide to waive the event

of default or engage in negotiations with

project sponsor to restructure the firm and

its debt or indeed take over the firm and

seek another sponsor (see Blanc-Brude et al.,

2014, for a formal model).

Hence, the firm may transit out of the

default state (into the risky state) with some

probability (πdr) at the next period, or stay

in this state and again transit out of default

at the next period, etc.

In this state, the DSCR process effectively

stops (there is no debt service), hence

estimating its mean and variance is irrel-

evant.

In the safe state, on the contrary, the

realised DSCR is so high that no matter

how volatile the process might be, from a

senior creditor perspective, the probability

of default is not significantly different from

zero. The debt is (conditionally) risk-free. As

before, in expectation at time t, an infras-

tructure project may transit in and out of

the safe state at each point in the future,

with some probability (π sr).

In this state, estimating the parameters

of the DSCR distribution, in particular

estimating its variance, is also irrelevant.

A Publication of the EDHEC Infrastructure Institute-Singapore 45



Cash Flow Dynamics of Private Infrastructure Project Debt- March 2016

3. Approach and Methodology

Finally, in between the default and safe

states, a project’s DSCR may take values

between 1 and some higher threshold ¯DSCR.
From this state, it may either stay in the risky
state at the next period, or transit out of it

into the state of default ”d” or the safe state

”s”, both described above.

In this state, we know from our results in

chapter 2 that if the upper threshold is set at

the 85th/90th quantile of our DSCR sample,

the data follows a lognormal process, the

paramaters of which (position and scale)

can be estimated using the particle filtering

approach described earlier in section 3.1.

Next, we discuss how state transition proba-

bilities may be estimated and describe the

method implemented in chapter 5.

3.2.2 State Transition Probabilities
DSCR States as a Markov Process
Estimating state transition probabilities

amounts to estimating the components of

a matrix describing another Markov process.

Say for now that the DSCR process can take

one of two states St at time t: a risky state

defined as DSCRt ≥ 1 and denoted by St =
r, or a default state such that DSCRt < 1

and denoted by St = d.

The probability of being in the risky state is

defined as Pr(DSCRt ≥ 1) = Pr(St = r) =
pt while Pr(DSCRt < 1) = Pr(St = d) =

qt = 1 − pt. qt is also the probability of

default at time t.

With a Markov process, future DSCR states

can be modelled as a function of the current

state. Denoting time i = τ − 1, let π rd =

Pr(St+τ = d|St+i = r) be the state

transition probabilities between states r and
d, with the one-step transition probability

matrix given by:

St+i =

(
π rr π rd

πdr πdd

)

Here, π rr is the probability of being in the

risky DSCR state at time t + τ conditional

on having been in the same state at time

t+ i, and π rd is the probability of transiting

to the default state at time t+τ conditional

on having been in the risky state at time t+i.

The probability of being in the risky state at

t+τ conditional on the realised state at t+ i
is thus written:

pt+τ = pt+iπ rr + (1 − pt+i)(1 − πdd)

(3.9)

And in the matrix notation[
pt+τ

qt+τ

]
= St+i.

[
pt+i
qt+i

]
(3.10)

That is, the probabilities of being in the

risky (default) state in period t + τ are

determined by the product of the transition

matrix with the probabilities of being in the

risky (default) state in the previous period

t+ i.

Hence, staring from any point in time, for

which we know which state the DSCR is in

(i.e. DSCRt is either strictly greater than 1

or not), we can compute the probabilities

of being in the risky and default states at

future periods by successively applying the

transition matrix.
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Figure 20: Illustration of the DSCR path between states
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Figure 21: Illustration of the transition probabilities between two Markov states St = d and St = r. The task of the state transition model is to
estimate the transition probabilities between the two states.

St = rSt = d

π rd

πdr

π rrπdd

According to equation (3.10), we can know

the conditional probabilities of being in the

risky or default state in each future period

t + τ by estimating St+i across the project

lifecycle for i = 0, . . . (T − 1), as well as

initial state conditions.

For example, in the context of a greenfield

(new) infrastructure project, initial condi-
tions at t0 are unambiguously set to π rr =

p0 = 1 and πdd = q0 = 0, since a new

project cannot start its life in the default

state.

Estimating Transition Probabilities
In Markov switching models, the transition

probability from a state i to a state j is

estimated by counting the observed number

of transitions from state i to state j and

dividing by the total number of transitions

from state i. That is,

π̂ i,j =
ni,j∑N
k=1 ni,k

, (3.11)

where π̂ i,j denotes the estimated transition

probability from state i to j, ni,k denotes

number of transitions from state i to state

k, and N denotes the total number of states.
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These models can be used to estimate

both time-independent and time-varying

transition probabilities. However, since

these models rely solely on observed

transitions to estimate state transition

probabilities, a large number of unbiased

time-series observations are required to

estimate these probabilities reliably.

In the case of infrastructure projects, as

discussed in detail in Blanc-Brude (2014),

the frequency of observations at any point

in time is too limited, and the number of

control variables required to explain the

variance of realised DSCRs —from initial to

realised market conditions, to project and

macro-level characteristics — is too large.

As before, a Bayesian approach to

estimating state-transition probabilities is

more promising.

In Bayesian Markov switching models, we

start with forming a prior belief about

transition probabilities between different

states, based on information available

otherwise (e.g. a project does not start

its life in the default state), which is then

updated as one observes actual transitions

between states.

By definition, the values of any St+τ are

such that each line of the state transition

matrix must add up to one i.e. π rr+πdr = 1.

Hence:

St =

(
π rr 1 − π rr

π rd 1 − π rd

)

That is, each row of St+τ matrices is equiv-

alent to an independent Bernoulli draw of

parameter π rr or π rd, and we only need to

estimate π rr and π rd to know the entire

transition matrix at time t+ τ.

Say we can observe a population of N
projects at time t, with n of ”successes”

(realised DSCR transitions between two

given states), this data (call it Y) follows

a binomial distribution (the outcome is

binary) with the likelihood:

L(Y|π) =
(
N
n

)
πn(1 − π)N−n

where
(
N
n

)
= N!

n!(N−k)! is the binomial

coefficient.

According to Bayes’ Law:

p(π|Y) ∝ p(π)L(Y|π)

that is, the posterior (distribution) is propor-

tional to the prior (distribution) times the

likelihood.

We can give a beta prior density to Pr(π),
such that:

p(π; α, β) =
Γ(α + β)
Γ(α)Γ(β)

πα−1(1 − π)β−1

The Beta distribution has a domain on [0,1]

which can usefully represent a probability
and can take any shape on its domain.

The Beta distribution is also conjugate with

respect to the Binomial likelihood, so that

the product of the prior (Beta) and the

likelihood (Binomial) is another Beta distri-

bution, which incorporates the information
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obtained from observing the data.

p(π|Y) ∝ p(π)L(Y|π)
∝ πn(1 − π)N−n × πα−1(1 − π)β−1

∝ Beta(α + n, β + N− n)
(3.12)

...to a normalising constant which does not

depend on π .

Hence, the sufficient statistics to update

the prior distribution of π are N and n,
which we know to be observable i.e. with

an observable population of N projects, we

can count the number n of draws corre-

sponding n realised DSCRs strictly greater

than one at time t + τ given that we also

observed a DSCRs strictly greater than one

at the previous period.

In other words, by assuming that the

true value of π rr is the mean of a

Beta distribution of parameters (α, β) (the

meta-parameters), given that the likelihood

function of the data follows a Binomial

distribution of parameter π rr with N data

points, we can update the values of the

meta-parameters each time we observe n
transitions (in this case projects staying in

the risky state from one period to the next)

amongst N new data points.

The posterior distribution of π rr summarises

the state of our knowledge by combining

information from newly available data

expressed through the likelihood function,

with ex ante information expressed through

the prior distribution.

The posterior distribution of Pr(π rr) then

becomes a new prior each time new

empirical observations become available.

Bayesian inference thus allows sequential

learning about the expected state transi-

tions of projects’ DSCRs.

The same process is used to estimate π rd,

after observing projects transiting from the

risky to the default state.

In chapter 5, we implement this approach

to estimating state transitions for all three

states described above.

3.3 Conclusion
In summary, our approach consists of

filtering the parameters of the DSCR distri-

bution in the ”risky” state in which we

can reasonably assume that it follows a

lognormal process, as well as the transition

probabilities in and out of that state at each

point in the project lifecycle.

Moreover, estimating the parameters of the

DSCR process outside of the risky state is

unnecessary because the other two possible

states do not represent any credit risk: the

firm is either already in default or its debt is

risk-free (in that period).

In the next two chapters, we implement this

approach to our dataset.
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In this chapter, we implement our filtering

approach of the DSCR distribution param-

eters discussed in Chapter 3 using data for

each family of infrastructure projects.

We report our results in Section 4.1 and

some implications in Section 4.2.

4.1 Filtered Values of the DSCR
Distribution
As described in Chapter 3, we estimate the

DSCR lognormal distribution parameters m
and p at each point in time.

We start by assuming prior values for the

four meta-parameters — μ, δ, α, β — of

the DSCR distribution, and then update

them sequentially using the particle filter

described earlier.

Our choice of prior values are shown in

Figure 22. The mean of the log of DSCR

is largely concentrated between 0 and 1

with a mean of about 0.5. This prior distri-

bution for mean of log(DSCR) is consistent

with the observed DSCR mean values that

lie in the range of 1 to 3. The precision of

the log(DSCR) distribution is concentrated

between 0.5 and 1.5, which is chosen to be

consistent with the observed DSCR standard

deviations that generally fall in the range of

0.5 to 2.

Given these choices of prior distributions of

meta-parameters, Table 10 shows estimated

posterior parameter values, as well as the

implied DSCR mean and standard deviation

for all periods, for each family. Due to the

relatively large number of DSCR observa-

tions in the cross section during the first few

operational years, the effect of prior values

fades away within the first two periods in

this case.

Figure 23 shows the estimated mean

and 99.5% confidence intervals of DSCRt
for both project families. The parameter

estimates follow a similar trend as observed

values reported in Chapter 2, but are much

smoother, which is a consequence of the

increasing precision of parameter estimates.

Having filtered out the noise in the observa-

tions makes our estimates less sensitive to

jumps in the data, while learning from each

new observation.

The difference in DSCR dynamics between

contracted and merchant projects is also

clear in Figure 27, which shows amuchmore

dynamic evolution of both the mean and

standard deviation of DSCR in the merchant

case. In particular, relative to merchant

projects, contracted infrastructure exhibits

less DSCR volatility and a constant realised

volatility in time, as is also illustrated in

Table 11, which shows the per period rate of

change of the mean and standard deviation

of DSCRs in contracted and merchant

infrastructure.

For both families, filtered mean and

standard deviation show an increasing

trend, but to very different extents. For the

contracted family, the DSCR mean increases

from about 2.2 to 2.3, and standard

deviation increases from about 20 to 30%

over 15 years. But for merchant projects,

the DSCR mean increases from about 2

to 2.5, while standard deviation increases
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Figure 22: Prior distributions of meta-parameters of log(DSCR) distribution.
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Table 10: Bayesian estimates of DSCR distribution parameters for both families. The initial prior values for μ, δ, α, β are set to be 0.5, 0.1, 500, and
100, and posterior for each period is used as a prior for the next period. M and SD denote mean and standard deviation of the DSCR distribution.

Contracted Merchant
Yr μ+ δ+ α+ β+ M SD μ+ δ+ α+ β+ M SD
1 0.752 194 675 26 2.163 19.663 0.535 111 918 38 1.744 20.578
2 0.779 303 732 37 2.236 22.910 0.691 158 942 69 2.071 27.580
3 0.780 414 789 44 2.244 23.957 0.707 207 966 79 2.111 29.118
4 0.770 519 844 49 2.223 24.377 0.727 250 988 91 2.167 31.045
5 0.770 622 897 54 2.225 24.944 0.717 287 1,006 97 2.149 31.781
6 0.767 712 943 58 2.221 25.116 0.734 319 1,022 107 2.195 33.294
7 0.772 784 981 62 2.234 25.637 0.741 346 1,036 113 2.215 34.017
8 0.774 849 1,015 67 2.240 26.111 0.766 365 1,045 131 2.290 36.515
9 0.776 894 1,038 70 2.247 26.328 0.788 382 1,054 145 2.356 38.473
10 0.779 926 1,055 73 2.257 26.814 0.793 394 1,060 153 2.375 39.412
11 0.783 946 1,067 76 2.267 27.197 0.802 404 1,065 175 2.421 42.212
12 0.787 959 1,074 78 2.278 27.433 0.804 412 1,069 179 2.428 42.663
13 0.791 969 1,080 80 2.289 27.783 0.804 416 1,071 179 2.429 42.624
14 0.796 976 1,084 83 2.302 28.189 0.807 423 1,074 180 2.438 42.734
15 0.800 981 1,088 86 2.316 28.667 0.814 426 1,076 184 2.459 43.140

Figure 23: Filtered DSCR values for contracted and merchant families.
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Figure 24: Filtered DSCR mean (left) and volatility (right) for contracted and merchant families.
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Figure 25: DSCR densities for contracted and merchant families.
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from about 25 to 45%. Thus, the merchant

exhibits a much more pronounced increases

in its mean and volatility of DSCR over time.

Table 11 shows this clearly by documenting

the growth rates of the DSCR mean and

volatility for the two families.

Figure 25 shows the resulting estimates of

DSCR densities for both project families at

time t. Densities for merchant projects are

more spread out, and have heavier right

tails in almost all operation years, compared

to DSCR densities for contracted projects,

consistent with the panel regression results

reported in Section 2.3.

Moreover, densities for the merchant

projects drift further to the right compared

to their contracted counterparts as

investment time unfolds, consistent with

the more pronounced change in mean

and standard deviation shown in Table 10.
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Figure 26: DSCR trajectories in the state (m, σ) plane, for both families.
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Figure 26 shows the DSCR trajectories of the

two families in the DSCR mean-volatility

plane.

4.2 Credit Risk Implications
An immediate result from the filtered

estimates of DSCR densities in infras-

tructure projects is the probability that

realised DSCR values fall below a default

threshold.

Figure 27 shows the probability that DSCRt
falls below the hard default threshold at

each point in time. This is consistent with

Moody’s definition of default (missing one

payment) and we note that this result is

very similar to the trends in marginal default

frequencies reported by Moody’s (2015).

Figure 27 also shows the probability that

DSCRt falls below a ”technical” default

threshold of 1.05. Having derived the entire

distribution of DSCRs at each point time, we

can now predict technical as well as hard

defaults, an important improvement on the

reduced form approach employed by rating

agencies.

Indeed, technical defaults are the most

common in project finance and they trigger

valuable options to step-in for creditors,

which largely explains the high reported

level of recovery in infrastructure project

debt.

Overall, these results suggest that merchant

family shows a more dynamic credit risk

profile compared to contracted family.
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Figure 27: Probabilities of hard and soft defaults for contracted and merchant families, computed as the probabilities of DSCRt falling below 1.0
and 1.05, respectively.
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Table 11: Growth rate of the DSCR mean and SD for the two families.

Contracted Merchant
Mean 0.45% 2.44%
SD 1.09% 4.38%

As discussed above, once an infrastructure

project is in default, this lognormal DSCR

process stops for a least one period.

Likewise, DSCRs may take such high

values that they may not be characterised

as following a lognormal distribution

anymore. In the next chapter, we present

our estimates of the DSCR state transition

model outlined in Chapter 3.
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In this chapter, we describe our results for

time-varying state transition probabilities of

the DSCR between the default, risky and

safe states discussed in Chapter 3.

We first estimate the transition probabil-

ities between either the risky or the safe

state and default state in Section 5.1 and

then the probability of transition between

the risky and safe states conditional on the

project not being in default in Section 5.2.

Section 5.3 combines these estimates and

summarises the probability of being in any

given state at each point in time.

5.1 Transitions To and From the
Default State
We estimate transition probabilities using

Bayesian updating of prior transition proba-

bilities once a number of transition counts

have been observed.

Defaults are rare in project finance and our

sample remains limited in size and therefore

allows us to observe only a handful of

defaults (5). This makes calibration using

observed default counts less reliable as our

choice of prior will dominate the results.

Instead, the predicted count of defaults is

obtained using our estimates of the proba-

bility of default for the two families reported

in Chapter 4.

Say that N = nd+nr+ns, where nr, ns, and
nd are number of DSCR observations in the

risky, safe, and default states, respectively,

and N is the total number of DSCR observa-

tions at time t. Then if pd is the probability

of default at that time, we can write:

N = pdN+ nr + ns

N(1 − pd) = nr + ns

(5.1)

and

nd + nr + ns =
nr + ns
(1 − pd)

(nr + ns)pd = nd(1 − pd)

nd =
(nr + ns)pd

1 − pd

=
nrspd
1 − pd

(5.2)

Hence, we can obtain a default count from

our previous estimate of pd and counts of

nrs = nr + ns in each period.

To estimate the number of transitions from

the default state, we start with the time

to emergence from default of 2.3 years,

reported in Moody’s (2015), and provide the

following calibration: we assume that each

project has a 10% probability of emergence

from default within the first year, a 50%

probability of emergence in the second

year conditional on not having emerged

in the first year, and a 40% probability of

emergence from default in the third year

conditional on not having emerged in the

first two years. This leads to an average time

of emergence of 2.3 years. Figure 29 shows

probability of emergence from default.

This allows us to estimate the number of

projects that transition from the default to

default states, ndd, and from the default to

one of the two no-default states (risky or

safe), ndrs = ndr + nds, in each period.

Once the number of transitions have been

A Publication of the EDHEC Infrastructure Institute-Singapore 57



Cash Flow Dynamics of Private Infrastructure Project Debt- March 2016

5. DSCR State Transition Model

Table 12: Bayesian estimates of transition probabilities from the default state for both families. Initial priors α− = 15 and β− = 1, the posterior
values for each period are used as priors in the next period.

Contracted Merchant
pd nrs nd ndd ndrs α β pdd pdrs pd nrs nd ndd ndrs α β pdd pdrs

1 0.37 105 0.44 0.44 0.00 15 1 0.94 0.06 0.37 33 2.86 2.86 0.00 18 3 0.84 0.16
2 0.37 119 0.83 0.44 0.39 16 2 0.90 0.10 0.37 47 2.75 0.17 2.57 20 6 0.77 0.23
3 0.37 111 0.80 0.41 0.40 17 3 0.87 0.13 0.37 40 0.30 0.15 0.16 21 6 0.76 0.24
4 0.36 107 0.93 0.39 0.37 18 4 0.84 0.16 0.36 38 1.43 0.14 0.13 21 8 0.73 0.27
5 0.36 93 0.86 0.33 0.35 19 4 0.81 0.19 0.36 27 0.29 0.10 0.12 22 8 0.73 0.27
6 0.36 79 0.75 0.28 0.30 19 5 0.79 0.21 0.36 26 0.24 0.09 0.09 22 8 0.72 0.28
7 0.35 69 0.66 0.25 0.25 20 6 0.77 0.23 0.35 20 0.21 0.07 0.08 22 9 0.72 0.28
8 0.36 50 0.54 0.18 0.22 20 6 0.76 0.24 0.36 16 0.16 0.06 0.06 22 9 0.72 0.28
9 0.35 34 0.40 0.12 0.16 20 7 0.75 0.25 0.35 11 0.13 0.04 0.05 22 9 0.72 0.28
10 0.34 24 0.29 0.08 0.11 21 7 0.75 0.25 0.34 9 0.09 0.03 0.03 22 9 0.71 0.29
11 0.34 15 0.20 0.05 0.07 21 7 0.74 0.26 0.34 6 0.07 0.02 0.03 22 9 0.71 0.29
12 0.33 11 0.13 0.04 0.05 21 7 0.74 0.26 0.33 5 0.05 0.02 0.02 22 9 0.71 0.29
13 0.33 10 0.10 0.03 0.03 21 7 0.74 0.26 0.33 4 0.04 0.01 0.01 22 9 0.71 0.29
14 0.32 8 0.08 0.03 0.03 21 8 0.74 0.26 0.32 3 0.03 0.01 0.01 22 9 0.71 0.29
15 0.29 6 0.06 0.02 0.02 21 8 0.74 0.26 0.29 4 0.03 0.01 0.01 23 9 0.71 0.29

Figure 28: Transition probabilities from the default state for contracted and merchant projects in operation time.

0 5 10 15 20

0

20

40

60

80

100

Transition Probabilities from the Default State for Contracted Projects

Operation Year

Pr
ob

ab
ili

ty
 (

%
)

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

D−>D
D−>RS

0 5 10 15 20

0

20

40

60

80

100

Transition Probabilities from the Default State for Merchant Projects

Operation Year

Pr
ob

ab
ili

ty
 (

%
)

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

D−>D
D−>RS

computed, the transition probabilities from

the default state are estimated using the

procedure described in Chapter 3. That is,

the probability of transitioning from default

to default state is

pdd = β(αdd, βdd) (5.3)

pdrs = 1 − pdd = 1 − β(αdd, βdd) (5.4)

We note that the pdrs is different from

the probability of emergence of a single

project, as this is also affected by the

number of projects that are currently in the

default state and due to emerge but may

have defaulted at different points in time.

pdrs is the probability that all the projects

currently in default will emerge from default

in the next period. Thus, it is the probability

of emergence from default of an average

project in a diversified portfolio of projects

within a given project family.

Table 12 shows the estimated number of

projects as well number of transitions from

the default to default states and default

to no-default states. Once the number of

transitions from the default state have

been obtained, we can compute the implied

probabilities of transition from the default

state. These transition probabilities are also

reported in Table 12, and shown in Figure 28.
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Figure 29: Probability of emergence from default.
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For both families, we find that the proba-

bility of transitioning out of the default

state, conditional on having been in default

at the previous period increases as a project

matures. That is, in a diversified portfolio of

loans within a single family, more loans are

likely to emerge from default in later years

of the project life.

5.2 Transitions Conditional on No
Default
Next, we move on to computing the proba-

bilities of transition between safe and risky

states, given that the project is not in

default.

Tables 13 and 14 report the Bayesian

estimates of the posterior parameters for

the probabilities of staying within the same

state from period to period. We start with a

uniform prior for the probability of staying

within the same state. That is, prr, pss, and
pdd are all assumed to follow beta distri-

bution with α = β = 1. In the next period,

we observe transitions between states, and

update our prior estimates of α and β
according to the procedure described in

chapter 3:

αii = αii + nii (5.5)

βii = βii + Ni − nii (5.6)

where i ∈ {r, s, d}, and Ni denotes total

number of transitions from state i, and nii
denotes total number of transitions from

state i to state i. The average probability of

staying within the same state, pii, is then

given by the definition of the mean of Beta-

distributed variables:

pii =
αii

αii + βii
(5.7)

These updated (posterior) estimate of αii
and βii are then used as prior estimates for

transition probabilities for the next period.

This evolution of transition probabilities

captures both the effects of time variation

in true underlying transition probabilities as

well as the effect of learning about these

true probabilities. As we move forward in

time, our prior becomes more and more

informed, and estimated transition proba-

bilities tend to become more stable.
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Figure 30: Transition probabilities from the safe state for contracted and merchant projects in operation time.
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Figure 31: Transition probabilities from the risky state for contracted and merchant projects in operation time.
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Table 13: Bayesian estimates of state transition probabilities for contracted projects. Initial prior is assumed to be α− = β− = 1 (equivalent to a
Uniform distribution), and the posterior values for each period are used as prior for the next period.

risky-to-risky safe-to-safe
Nr nrr α+

rr β+
rr prr Ns nss α+

ss β+
ss pss pr ps pd

1 95 92 93 4 0.96 10 2 3 9 0.25 0.87 0.10 0.00
2 112 111 204 5 0.98 7 1 4 15 0.21 0.91 0.07 0.00
3 109 109 313 5 0.98 2 0 4 17 0.19 0.93 0.06 0.00
4 107 104 417 8 0.98 0 0 4 17 0.19 0.95 0.04 0.00
5 89 89 506 8 0.98 4 3 7 18 0.28 0.95 0.04 0.00
6 75 75 581 8 0.99 4 2 9 20 0.31 0.95 0.04 0.00
7 67 65 646 10 0.98 2 0 9 22 0.29 0.95 0.04 0.00
8 49 49 695 10 0.99 1 1 10 22 0.31 0.95 0.04 0.00
9 33 33 728 10 0.99 1 1 11 22 0.33 0.95 0.04 0.00
10 23 23 751 10 0.99 1 1 12 22 0.35 0.95 0.04 0.00
11 14 14 765 10 0.99 1 1 13 22 0.37 0.95 0.04 0.00
12 10 10 775 10 0.99 1 1 14 22 0.39 0.95 0.04 0.00
13 9 8 783 11 0.99 1 1 15 22 0.41 0.95 0.04 0.00
14 6 6 789 11 0.99 2 2 17 22 0.44 0.95 0.04 0.00
15 5 5 794 11 0.99 1 1 18 22 0.45 0.95 0.04 0.00
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Table 14: Bayesian estimates of state transition probabilities for merchant projects. Initial prior is assumed to be α− = β− = 1 (equivalent to a
Uniform distribution), and the posterior values for each period are used as prior for the next period.

risky-to-risky safe-to-safe
Nr nrr α+

rr β+
rr prr Ns nss α+

ss β+
ss pss pr ps pd

1 26 26 27 1 0.96 7 2 3 6 0.33 0.63 0.08 0.02
2 41 41 68 1 0.99 6 3 6 9 0.40 0.72 0.06 0.02
3 38 36 104 3 0.97 2 1 7 10 0.41 0.76 0.04 0.01
4 35 33 137 5 0.96 3 2 9 11 0.45 0.78 0.03 0.02
5 24 22 159 7 0.96 3 1 10 13 0.43 0.79 0.03 0.01
6 24 23 182 8 0.96 2 1 11 14 0.44 0.80 0.04 0.01
7 16 14 196 10 0.95 4 2 13 16 0.45 0.80 0.04 0.00
8 13 13 209 10 0.95 3 3 16 16 0.50 0.80 0.04 0.00
9 10 10 219 10 0.96 1 1 17 16 0.52 0.80 0.04 0.00
10 8 7 226 11 0.95 1 1 18 16 0.53 0.80 0.04 0.00
11 5 5 231 11 0.95 1 1 19 16 0.54 0.80 0.04 0.00
12 4 4 235 11 0.96 1 1 20 16 0.56 0.80 0.04 0.00
13 4 4 239 11 0.96 0 0 20 16 0.56 0.81 0.04 0.00
14 2 2 241 11 0.96 1 1 21 16 0.57 0.80 0.05 0.00
15 2 1 242 12 0.95 2 0 21 18 0.54 0.80 0.05 0.00

Table 15: Average state transition probabilities between default and no-default states for contracted and merchant projects.

Contracted Merchant
D RS D RS

D 0.78 0.22 0.64 0.36
RS 0.00 1.00 0.00 1.00

Table 16: Average state transition probabilities (conditional on no default) between risky and safe states for contracted and merchant projects.

Contracted Merchant
R S R S

R 0.99 0.01 0.94 0.06
S 0.58 0.42 0.48 0.49

Figure 32: Probability in being one of the three DSCR states for contracted and merchant projects.
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Figure 30 shows transition probabilities in

each period between safe and risky states

conditional on not being in the default state.

In this figure, we see that the transition

probabilities from the risky to the safe state

start at a relatively high level (40%) and tend

to increase in time for merchant projects

but never reach levels higher than 50%.

For contracted projects, the probability of

transitioning from the risky to the safe state

increases faster but from a lower level of

around 20%, also to reach the 50% region

by year 15. Hence, contracted projects take

longer than merchant projects to create a

potential for significant upside, signalled by

a high DSCR (i.e. high free cash flow).

Figure 31 shows the same per period

transition probabilities from the risky state.

Generally speaking, the risky DSCR state

is highly persistent i.e. the probability of

staying in this state once the process is in it,

is high for both project families, indicating

that the projects are also likely to revert

to this state. The probability of staying in

the risky state is never 100% because the

likelihood of a positive or negative shock

pushing the DSCR process into the default

or safe states is never zero.

Still, this result is significant for the

purpose of asset pricing and conditional risk

measurement becausewe have documented

the risky state to be well-behaved, following

a Gaussian process. This is significant to help

improve the robustness of return and corre-

lation estimates derived from this type of

cash flow model.

5.3 State Transition Probabilities
Finally, figure 32 shows the probabilities of

being in one of three states for contracted

and merchant projects.

For contracted projects the probability of

being in the risky state is much higher

compared to the probability of being in the

other two states. Contracted projects are

more likely to stay in the ”normal” risky

state.

For merchant projects, the probability of

being in the risky state is lower, while the

probabilities of being in the default and

safe states are higher compared to the

corresponding probabilities for contracted

projects. Thus, merchant projects are found

to have more diverse DSCR trajectories in

state space, and each state is less persistent

(stable).

Table 16, which shows the matrix of

transition probabilities between the 3 states,

confirms this. It shows that the proba-

bility of staying within the state is much

higher than switching to the other state,

indicating a persistent state-dependence in

both states. Moreover, persistence is higher

for the risky state. The safe state is less stable

and the DSCR process tends to (mean-

)revert to the risky state.

As we argued earlier, path dependency

can be an important dimension of infras-

tructure investment insofar as assets are

more or less heterogenous and it can be

difficult to fully diversify a portfolio of very

large and bulky assets. Our results above

suggest that contracted infrastructure is
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more homogenous than merchant projects,

which are more likely to follow paths that

diverge strongly from the mean of the

population.

In the next chapter, we examine the role

of path dependency in individual projects

and how our approach allows us to track

the dynamics of individual investments in

the context of what what we have learned

about other projects through previous

observations.
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In preceding chapters, we have focused on

a population of investment infrastructure

projects. While these projects can be divided

into distinct families of DSCR processes, our

results remained focused on broad trends

within each family of projects.

However, we know that building a large,

well-diversified portfolio of infrastructure

projects is not necessarily available even

to large, long-term investors (see Blanc-

Brude, 2013, for a discussion) and that

project specific risk is likely to remain a

concern. Moreover, certain creditors such as

commercial banks are required by prudential

rules (a.k.a. Basel III) to report expected

losses ”line by line” i.e. without taking

into account any diversification of the loan

portfolio risk arising from their lending to

multiple projects of different types and in

different countries.

Hence, in this chapter, we present illus-

trative examples of how our DSCR state

transition and filtering models can be used

to track the DSCR behaviour of individual

projects.

In what follows, we consider two examples:

a negative shock to the DSCR path of

a merchant project and a project which

transits between risky, safe and default

states during its life.

We show that applying Bayesian inference

to these cases allows expectations to be

revised in terms of future cash flows

and cash flow volatility, thereby enabling

us to revisit expected default frequencies

and therefore expected loss and return

measures, taking into account the path

dependency of individual projects.

6.1 Tracking a Project with a Jump
in the DSCR
We first consider a project that follows an

oft-observed trajectory: while it remains in

the risky state throughout its life, it starts

off with a relatively high DSCR, implying

a merchant-type structure with relatively

high DSCR volatility, but later on undergoes

a large downward shift in its realised DSCR

level, e.g. as the result of a negative demand

shock, while its DSCR realised volatility from

that point onwards also decreases markedly.

A concrete case of such a trajectory could

be a toll road experiencing significant loss of

traffic after an economic recession, but for

which the residual ”baseload” traffic is much

less volatile than before the shock, and still

sufficiently high to keep the DSCR out of the

default state.

Such a project would not be adequately

captured by the mean DSCR process of its

original family, even though this was the

best available starting point to anticipate its

behaviour at t0.

In this illustration, we know the ”true”

underlying DSCR process that is otherwise

unobservable, as discussed in chapter 3

and how it is impacted by the negative

demand shock. The point of the example is

to show that as we observe realised infor-

mation, our estimates of the true process

can quickly converge to the true value and
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then track it as it evolves during the life of

the investment.

Here, the project is assumed to have a life

of 20 years, starts with a DSCR of 2.0 and

follows the following true dynamics for the

first 10 years

log(DSCR)t+1 = log(DSCR)t + N(0, 0.08)
(6.1)

In year 11, the project suffers a shock,

causing its true mean DSCR to go down

to 1.3 and it then replicates the following

dynamics for the next 10 years:

log(DSCR)t+1 = log(DSCR)t + N(0, 0.04)
(6.2)

Hence, at t11 the expected DSCR has

dropped by 35% below its original

trajectory, but DSCR volatility has halved.

Next, we draw a single realised DSCR value

from this underlying process for each of

the 20 periods, thus simulating 20 DSCR

annual observations, and use the filtering

approach described in chapter 4 to estimate

the underlying parameters.

Figure 33 shows the filtered DSCRmean and

standard deviation along with the realised

DSCR values and the true standard deviation

of the project.

The figure shows that filtered estimates

of mean and standard deviation follow

the underlying trajectory i.e. the estimated

parameters of m and p are reasonably

accurate and track its true values very

closely.

As soon as the DSCR diverges from its

original trajectory the filter takes this

new information into account, and if the

divergence persists, future estimates of

the expected value of DSCRt are updated

accordingly.

Likewise, initial estimates of the volatility of

DSCRt on the right panel of figure 33 are

corrected as information about the lower

realised volatility becomes integrated into

each posterior value.

The ability to revise the DSCR dynamics

of individual projects directly leads to the

revision of their risk metrics.

For example, figure 34 shows the implied

probabilities of the project’s DSCR falling

below the level of 1.15, 1.10, and 1.0 as the

DSCR dynamics are revised in time i.e. the

probabilities of dividend lockup, soft default,

and hard default, respectively.

The figure suggests that the negative jump

in the DSCR, combined with the lower

realised volatility of DSCR, has no noticeable

effect on the project’s probability of hard

default, a negligible impact on probability of

soft default, but a noticeable impact on the

probability of a dividend lockup.

We note that without this combined

assessment of the DSCR mean and

volatility, a drop of 35% of the project free

cash flow could qualify it for a (possibly

unwarranted) credit downgrade.

66 A Publication of the EDHEC Infrastructure Institute-Singapore



Cash Flow Dynamics of Private Infrastructure Project Debt - March 2016

6. DSCR Path-Dependency

Figure 33: Filtered DSCR quantiles and standard deviation for a single project.
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Figure 34: Project’s distance to lockup, soft, and hard defaults and the corresponding probabilities of lockup, soft, and hard defaults, estimated using
filtered DSCR mean and volatility.
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6.2 Tracking a Project Changing
State
In this example, we assume the existence

of a project that first starts in the risky

state, stays in it for three years, then transi-

tions into the safe state after year three, but

goes into default in the subsequent year. It

eventually emerges from default after two

periods and stays in the risky state until

maturity.

As in the previous example, we assume that

the project follows autoregressive dynamics,

so that the mean DSCR in the next period

is simply the realised DSCR in the previous

period. The project is assumed to have a

constant variance of 5%.

In this example, we need to predict DSCR

dynamics post-emergence from the default

state. Hence, the filtered DSCR distribution

for the whole family can be combined with
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Figure 35: Weights for forecasts based on project and family priors, and the corresponding DSCR forecasts.
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Figure 36: Filtered DSCR quantiles and standard deviation for a project with state transitions.
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the project specific DSCR distribution to

form a more reliable DSCR forecast.

Once the project goes into default, we use

a weighted average of the family-specific

DSCR distribution and the project-specific

DSCR to forecast the new DSCR distribution

when it comes out of the default state.

To combine the family-specific DSCR distri-

bution with project-specific DSCR forecasts,

we compare realised DSCR in every period

after the project’s emergence from default

with the DSCR forecasts implied by both

the family- and project-specific priors, and

compute the sum squared deviation for

both forecasts.

Then we compute the updated (posterior)

DSCR distribution in every period using

project- and family-specific DSCR prior,

weigh the two implied distributions by their
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sum squared deviation. Thus the posterior

distribution of the project can be written as

μ+ =
SSp

SSp + SSf
μ+
f +

SSp
SSp + SSf

μ+
p

(6.3)

p+ =
SSp

SSp + SSf
p+f +

SSp
SSp + SSf

p+p

(6.4)

μ+
f and p+f are the posterior mean and

precision of DSCR distribution obtained by

updating the family-specific prior using the

realised project DSCR in the current period,

and μ+
p and p+p are the posterior mean and

precision of DSCR distribution obtained by

updating the project-specific prior using the

realised project DSCR in the current period.

This weighting scheme allows us to better

capture the project’s DSCR distribution

immediately after its emerges from default

i.e. whenwe have little information about its

new dynamics. If we used only the project-

specific prior, which was last updated before

the project transitioned into the safe state,

the forecasted DSCRs will be much higher.

As new information about the project’s new

behaviour transpires in periods following

emergence, the weights on project-specific

forecasts increase, and the DSCRs are effec-

tively computed using only the project-

specific forecasts.

This is shown on figure 35. The project

forecasts carry more weight in the first three

periods, but drop in year 7 when the project

emerges from default and new ”learning”

has to occur. In this case, the new DSCR

is much lower than it was before project

went into default. The weights for project-

specific forecasts then increase again as

realised DSCRs stabilise at a level consid-

erably lower than the level forecasted by the

family-specific prior.

Black, blue, and green curves indicate

project-specific, family-specific, and

weighted forecasts, respectively, for the 7th

and 10th years. We see that the weighted

forecasts are always closer to the true DSCR

level (the red curve). Figure 36 shows the

filtered DSCR mean and volatility using

weighted forecasts, and it tracks the true

values fairly well, apart from the first few

years where filtered DSCR volatility exceeds

true DSCR due to prior uncertainty.

Finally, Figure 37 shows the DSCR trajec-

tories for the two families and the two

projects described in this chapter, in the

DSCR mean-variance plane. It can be clearly

seen that the individual projects can exhibit

fairly different trajectories compared to the

DSCR families. To the extent that investors

cannot fully diversify or have to report line-

by-line credit risk measures, the ability to

model the path dependency of the DSCRt
process allows project specific risks to be

taken into account, while also integrating

available information about each project’s

reference process or family.
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Figure 37: Individual DSCR state (mt ,pt) trajectories in time
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In this paper, we have conducted the

first empirical study of DSCR dynamics

in infrastructure project finance. We hand

collected 15 years of realised DSCR data

for more than 200 projects in Europe

and the United States, covering two broad

categories of projects: those receiving a

contracted income and those exposed to

merchant or commercial risks.

We find that these two business models

can be considered to correspond to two

distinctive DSCR processes, with statistically

differentmean and variance parameters and

following different project time dynamics.

We also find that contracted infrastructure

DSCRs in the cross section are much less

affected by macro-variables or the business

cycle than merchant projects.

Initial findings using linear regression

and panel models suggest that the DSCR

profile of individual projects and families

of projects is highly non-linear, auto-

regressive and heteroskedastic (variance is

not constant). However, we also show that

realised DSCRs can be fitted to a lognormal

process up to their 90th and 85th quartiles

for contracted and merchant projects,

respectively, which allows the development

of an easily tractable model of parameter

inference.

Hence, we propose a two-dimensional

modelling strategy combining, first a three-

state transition model between which the

DSCR process is assumed to transit: a risky

state in which it is indeed an autoregressive

lognormal process; a default state defined

by a threshold corresponding to DSCR = 1

in which the DSCR process stops until it

emerges from default; and a safe state,

corresponding to high realised values above

the ”good-lognormal-fit” quantile, in which

case, as long as the DSCR stays in that state,

the project debt is considered risk-free.

Second, we propose to use a straightforward

implementation of so-called particle

filtering models to infer the parameter

values of the DSCR’s lognormal process in

the risky state i.e. when documenting and

tracking the volatility of the DSCR matters,

because it is a direct measure of credit risk.

We show that such a framework allows

us to derive the dynamics of DSCRs in

well defined groups of projects as well as

individual projects, including tracking the

individual DSCR ”path” followed by invest-

ments that do not necessarily correspond to

the median infrastructure project.

For instance, we show that the ability to

infer both the expected value and the

volatility of the DSCR process allows us

to take a much more informed view on

the credit risk of projects that substantially

deviate from their base case e.g. a negative

DSCR shock accompanied by a significant

reduction of DSCR volatility does not neces-

sarily lead to an increase of expected default

frequencies.

Such analyses will be further developed as

new data is collected and standardised to

improve our ability to track the DSCR path

of individual and groups of infrastructure

projects.
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For the most part, annual accounts are

represented faithfully from the statements

provided. However, statements may not

always include a cash flow statement, which

is required to understand the underlying

cash flows of infrastructure assets. As a

result, cash flow statements are estimated

from the income statement and balance

sheet.

The starting point for all calculations is the

operating profit after tax. This value is the

accrual profit and does not reflect the actual

cash flows the firm experienced over the

year. As a result, adjustments are made to

take into account the non-cash impacts of

the accrual accounts.

8.1 Operating Cash Flows
To obtain operating cash flows, the

following adjustments are made to:

1. Operating profit after tax

2. add Depreciation and amortisation -

these are non-cash charges so are added

back

3. add Changes in Finance Receivable -

This is the main investment for project

financed companies with off-take

arrangements. This is because they have

to be accounted for as a finance lease.

Any change in this amount represents

cash received on top of the interest

recognised in the income statement.

4. add Interest Expense - this is added back

as it is not an operating cash flow, instead

this is a financing item

5. add (Increase)/Decrease in receiv-

ables and prepayments - any increase

(decrease) in receivables and payments

means that revenue is recognised (not

recognised), but the cash has not be

received (cash has been received). As a

result the operating profit needs to be

adjusted.

6. add Increase/ (Decrease) in payables - any

increase in payables means that expenses

have been recognised but not paid (a

decrease means a liability has been paid,

but no expense recognised)

7. add Movement in Taxes - for the

same reason as accounts receivables and

payables, if this goes up, the tax expense

has been recognised but not paid, if it is

negative, then the tax has been paid, but

not recognised.

8. add Increase/ (Decrease) in Non Current

Provisions - any increase in provisions

means that expenses have been recog-

nised but not paid (a decrease means a

liability has been paid, but no expense

recognised).

9. add Increase/ (Decrease) in Unearned

Income - any increase in unearned

income means that cash has been

received but not recognised as revenue,

instead it is an obligation to provide

services in the future (a decrease

means the services have been provided

and revenue recognised but no cash

received).

8.2 Investing Cash Flows
The investing cash flows are made up of two

line items. These are:
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1. Change in Investments - takes into

account any changes in the short-term

investments

2. Investment in Project - measures

any change in PP&E and increases

in the finance debtor. But subtracts

any increase in the Asset Revaluation

Reserve.

8.3 Financing Cash Flows

1. Repayment of Senior Debt - any decrease

in the non-current and current senior

debt is assumed to be a repayment.

2. Repayment of Mezzanine Debt - any

decrease in the non-current and current

mezzanine debt is assumed to be a

repayment.

3. Repayment of Equity Bridge - any

decrease in the non-current and current

equity bridge is assumed to be a

repayment.

4. Repayment of Shareholder Loans - any

decrease in the non-current and current

shareholder loans is assumed to be a

repayment.

5. Repayment of Bonds - any decrease in

the non-current and current bonds is

assumed to be a repayment.

The working assumption for all interest is

that any that is recognised as an expense

during the period in the income statement,

is paid in the same period. This is not an issue

for capitalised interest during construction,

but for projects where interest is capitalised

as a result of an inability to pay, it may

create some issues.

1. Interest Expense-Senior Bank Loans - any

interest recognised as an expense during

the period is treated as a cash outflow

during the period.

2. Interest Expense-Mezzanine Bank Loans

- any interest recognised as an expense

during the period is treated as a cash

outflow during the period.

3. Interest Expense-Bonds - any interest

recognised as an expense during the

period is treated as a cash outflow during

the period.

4. Interest Expense-Other Interest Bearing

- any interest recognised as an expense

during the period is treated as a cash

outflow during the period.

5. Interest Expense-Shareholder Loans -

any interest recognised as an expense

during the period is treated as a cash

outflow during the period.

Debt drawdowns are all calculated the same

way. If the difference between the sum of

current and non-current debt of this year

is greater than the sum of the current and

non-current debt of last year, it is assumed

that the debt has increased. This assumption

is poor when dealing with index-linked debt

securities like RPI linked bonds. However

without the necessary detail supplied in the

accounts, it is the best alternative at the

moment.

1. Drawdown of Senior Debt

2. Drawdown of Mezzanine Debt

3. Drawdown of Shareholder Loans

4. Drawdown of Bonds

5. Drawdown of Equity Bridge

6. Initial Equity Investment - this is calcu-

lated as the difference between the prior
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year’s paid up capital and the current

year’s paid up capital. Any increase

is assumed to be an initial equity

investment.

7. Dividends Paid - is calculated by

summing of the prior year’s retained

earnings and the current year’s profit

and subtracting the current year’s

retained earnings. If there is a difference,

it is assumed to be the dividend paid

for the year. Dividends can be declared

and not paid so in addition to this, any

change in the dividend declared account

from the prior year to this year is added.

8.4 Prior DSCR beliefs and
meta-parameters
For a given prior belief about the arith-

metic mean DSCR (E(DSCRt)) and arithmetic

variance of DSCR at time t (σ2
DSCRt ), we can

compute the prior parameters m (location)

and sigma (scale) of the log data thus:

σ2 = ln(1 +
σ2
DSCRt

E(DSCRt)2
)

m = ln(E(DSCRt))−
1
2
ln(1 +

σ2
DSCRt

E(DSCRt)2
)

= ln(E(DSCRt))−
1
2

σ2

which follows from the definition of the

lognormal density with mean exp(m + σ2

2 )

and variance (exp(σ2)− 1)exp(2μ + σ2).

The value of parameterm follows a Gaussian

(normal) distribution with meta-parameters

μ (mean) and δ (precision). The prior value of

μ is simply the prior value ofm and the prior

value of precision δ is set to a small number

(implying a large variance), e.g. 0.01.

The value of precision parameter p follows

a Gamma distribution for which we need

to derive the shape (a) and rate (b) meta-

parameters. We first give p a prior expected

value and variance. The prior mean of p
(call it μp) is simply the inverse of σ2, the

initial prior for the scale of the log data. The

prior variance of p (call if varp) is set to a

large number relative to the prior expected

precision, e.g. ten times p.

The initial prior values of a and b are then

computed as

a =
μ2
p

varp

b =
μp
varp

which follows form the definition of the

Gamma density function with mean μp =

ab and variance varp = ab2.
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Table 17: Realised DSCR quantiles post-construction for merchant projects, 1999-2014

Year N 10th-Q 20th-Q 50th-Q 80th-Q 90th-Q Mean SD
1 45 0.000 1.014 2.130 8.266 18.261 3.036 2.108
2 54 1.214 1.399 1.836 4.392 13.514 2.236 0.897
3 54 1.073 1.274 1.828 3.118 6.232 1.937 0.491
4 48 1.109 1.229 1.749 3.803 7.864 1.978 0.660
5 42 1.027 1.243 1.685 3.062 6.156 1.828 0.517
6 35 1.049 1.243 1.994 4.496 11.575 2.330 0.985
7 30 1.142 1.399 1.732 5.444 10.576 2.151 0.921
8 22 1.135 1.531 2.483 8.795 259.456 3.368 2.215
9 18 1.259 1.387 2.139 17.609 44.053 3.035 2.075
10 14 1.099 1.223 1.855 4.094 54.122 2.065 0.850
11 11 1.099 1.245 1.481 4.855 1,212.018 1.960 1.112
12 9 1.101 1.302 1.830 13.453 109.168 2.312 1.435
13 5 2.022 2.054 2.347 181.986 540.371 2.404 0.365
14 9 1.051 1.634 2.223 6.209 14.705 2.412 0.605
15 4 2.693 2.936 16.550 30.205 30.477 16.550 18.796

Table 18: Realised DSCR statistics post-construction by sector group, contracted infrastructure, 1999-2014

Year N 10th-Q 20th-Q 50th-Q 80th-Q 90th-Q Mean SD
Commercial and Industrial 22 2.085 2.284 2.638 3.617 4.301 2.701 0.279
Environmental Services 6 0.969 1.255 1.461 1.503 1.637 1.461 0.010
Oil and Gas 7 2.039 2.511 3.527 3.629 3.772 3.456 0.217
Telecom 9 2.176 2.346 2.655 4.707 6.096 2.986 0.861

Table 19: Realised DSCR statistics post-construction by sector group, merchant infrastructure, 1999-2014

Year N 10th-Q 20th-Q 50th-Q 80th-Q 90th-Q Mean SD
Energy 258 0.888 1.203 1.644 3.705 8.486 1.860 0.579
Environmental Services 8 1.004 1.196 2.597 3.837 5.140 2.494 0.854
Government Services 2 1.293 1.318 1.393 1.467 1.492 – –
Oil and Gas 57 1.636 1.819 3.738 35.604 419.386 6.548 7.168
Telecom 9 2.352 2.413 2.968 5.646 6.923 3.522 1.182

Table 20: Realised DSCR statistics post-construction for contracted infrastructure, by initial leverage, project size

Year N 10th-Q 20th-Q 50th-Q 80th-Q 90th-Q Mean SD
Leverage Below Median 509 1.472 1.714 2.284 3.828 5.876 2.428 0.521
Leverage Above Median 438 1.456 1.755 2.278 3.008 5.200 2.271 0.308
Size Below Median 491 1.435 1.681 2.231 3.688 5.587 2.331 0.475

Table 21: Realised DSCR statistics post-construction for merchant infrastructure, by initial leverage, project size

Year N 10th-Q 20th-Q 50th-Q 80th-Q 90th-Q Mean SD
Leverage Below Median 227 1.148 1.425 2.814 18.942 232.373 4.105 3.136
Leverage Above Median 37 1.225 1.527 2.382 4.060 5.848 2.350 0.624
Size Below Median 127 1.243 1.548 2.727 7.661 23.784 3.175 1.280
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Table 22: Number of reporting firms in project time, by revenue risk family and by sector

Total Contracted Merchant C&I Energy Env. Ser. Gov. Ser. O&G Telecom Transp.
1 280 156 112 6 77 13 119 13 5 47
2 254 145 97 5 64 12 114 13 5 41
3 253 145 96 5 64 12 114 12 5 41
4 249 145 92 5 61 12 114 12 5 40
5 243 144 87 5 56 12 113 12 5 40
6 237 142 83 5 53 12 112 12 5 38
7 229 138 79 5 51 12 108 11 4 38
8 216 130 75 5 49 11 99 11 4 37
9 197 115 72 5 47 10 85 10 4 36
10 172 95 67 3 45 10 68 9 3 34
11 148 74 64 3 45 10 51 7 3 29
12 127 58 59 3 40 10 36 7 3 28
13 109 45 54 2 35 9 26 7 3 27
14 99 38 51 2 33 9 20 7 2 26
15 92 34 48 2 31 9 17 7 1 25
16 83 31 43 2 27 9 15 5 0 25
17 69 27 34 2 22 8 11 5 0 21
18 57 21 28 1 16 8 8 5 0 19
19 48 18 22 1 11 8 7 5 0 16
20 42 16 18 1 9 8 6 5 0 13
21 33 13 13 1 4 8 5 4 0 11
22 30 12 12 1 4 7 5 3 0 10
23 26 10 10 1 3 7 5 2 0 8
24 19 4 10 1 3 6 1 1 0 7

Table 23: Number of reporting firms and DSCR statistics post-construction in calendar time.

Contracted Merchant
Year N Median SD N Median SD
1997 1.000 2.332 – 3.000 7.860 –
1998 2.000 1.665 – 4.000 16.490 20.481
1999 4.000 2.384 0.334 9.000 2.475 0.873
2000 8.000 3.565 1.002 10.000 3.659 95.928
2001 9.000 2.878 5.284 13.000 2.835 6.168
2002 14.000 3.102 0.845 12.000 1.759 0.561
2003 21.000 2.583 0.714 15.000 2.549 2.317
2004 32.000 2.430 0.388 21.000 1.879 1.771
2005 43.000 2.502 0.595 19.000 2.123 0.822
2006 62.000 2.275 0.541 24.000 2.258 1.070
2007 80.000 2.151 0.399 24.000 1.665 0.898
2008 86.000 2.334 0.324 24.000 2.229 0.893
2009 105.000 2.272 0.274 33.000 2.685 1.856
2010 114.000 2.246 0.358 36.000 2.092 0.546
2011 121.000 2.127 0.324 41.000 1.880 0.474
2012 127.000 2.097 0.328 44.000 1.963 1.043
2013 124.000 2.161 0.409 47.000 1.704 0.694
2014 47.000 2.437 0.535 37.000 1.565 0.517
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Table 24: OLS regressions for contracted and merchant families, and key sector within each family.

Dependent variable: log(DSCR)
Contracted Merchant

All Gov.
Services

Transport All Energy Oil & Gas Transport

Op Ph 1 0.451 0.824 0.048 0.196 2.454∗∗ 4.179∗∗∗ −0.000
(0.446) (0.585) (0.799) (1.681) (1.010) (1.358) (1.135)

Op Ph 2 0.522 0.870 0.378 0.679 2.887∗∗∗ 5.668∗∗∗ 0.365
(0.450) (0.588) (0.833) (1.698) (1.053) (1.570) (1.190)

Op Ph 3 0.918∗∗ 1.258∗∗ 0.788 0.749 3.279∗∗∗ 5.631∗∗∗ 0.218
(0.460) (0.598) (0.834) (1.726) (1.154) (1.658) (1.222)

Op Ph 4 0.489 0.833 0.274 0.044 6.355∗∗∗ 0.375
(0.495) (0.720) (0.871) (1.841) (1.878) (1.437)

Com & Ind 0.066 – – – – – –
(0.129) – – – – – –

Energy −0.875∗∗∗ – – – – – –
(0.200) – – – – – –

Env Ser – – – −0.311 – – –
– – – (0.732) – – –

Oil & Gas – – – 0.830∗∗ – – –
– – – (0.402) – – –

Telecom −0.843∗∗∗ – – −0.052 – – –
(0.210) – – (0.648) – – –

Transport 0.193∗∗ – – −0.515 – – –
(0.069) – – (0.318) – – –

1999 2.184∗∗∗ 0.262 3.077∗∗∗ 1.216 – −2.888 1.978
(0.498) (0.740) (0.819) (1.988) – (2.610) (1.376)

2000 0.455 −0.087 0.322 1.456 −1.844 −0.844 2.605∗∗
(0.457) (0.740) (0.757) (1.966) (1.588) (2.615) (1.288)

2001 0.771∗ 0.075 1.254 0.774 −1.418 −2.121 1.198
(0.438) (0.585) (0.770) (1.968) (1.588) (2.612) (1.308)

2002 0.747∗ 0.077 1.031 0.072 −2.246 −0.750 1.076
(0.420) (0.566) (0.734) (1.979) (1.523) (3.919) (1.310)

2003 0.664 0.003 1.170 1.533 −0.143 0.218 1.344
(0.413) (0.552) (0.741) (1.960) (1.526) (2.998) (1.273)

2004 0.399 −0.153 0.765 0.933 −0.354 −4.204 2.029
(0.404) (0.540) (0.749) (1.956) (1.474) (3.328) (1.305)

2005 0.609 0.097 0.835 0.421 −1.503 −4.303 0.995
(0.398) (0.533) (0.759) (1.954) (1.443) (4.369) (1.265)

2006 0.618 0.150 0.599 0.302 −1.955 −3.526 2.139
(0.396) (0.531) (0.742) (1.954) (1.393) (3.286) (1.341)

2007 0.555 0.045 0.616 0.521 −1.555 −4.384 1.796
(0.393) (0.529) (0.722) (1.949) (1.358) (4.031) (1.314)

2008 0.550 0.043 0.579 0.717 −1.156 −3.868 2.011
(0.392) (0.528) (0.719) (1.955) (1.389) (3.573) (1.411)

2009 0.525 0.043 0.408 1.116 −0.812 −3.219 2.803∗∗
(0.392) (0.527) (0.727) (1.946) (1.365) (3.324) (1.343)

2010 0.511 0.037 0.548 0.487 −1.553 −4.206 2.048
(0.391) (0.527) (0.719) (1.949) (1.364) (3.013) (1.327)

2011 0.468 −0.021 0.390 0.576 −1.847 −2.549 2.086
(0.391) (0.527) (0.722) (1.942) (1.352) (2.728) (1.326)

2012 0.430 −0.042 0.406 0.812 −1.500 −3.370 2.412∗
(0.391) (0.527) (0.719) (1.952) (1.387) (3.859) (1.321)

2013 0.428 −0.055 0.582 0.507 −1.610 0.865 1.344
(0.392) (0.527) (0.726) (1.942) (1.325) (3.891) (1.350)

2014 0.499 0.020 0.682 0.451 −1.970 −3.979 2.680∗
(0.398) (0.531) (0.969) (1.958) (1.354) (4.409) (1.487)

Leverage −2.242∗∗∗ −2.153∗∗∗ −6.831∗∗∗ −0.693∗ −0.279 0.497 −1.426∗∗
(0.166) (0.167) (1.045) (0.417) (0.587) (6.690) (0.589)

Log assets 0.136∗∗∗ 0.122∗∗∗ 0.088 0.151∗ 0.340∗∗ −0.233 0.037
(0.022) (0.021) (0.172) (0.085) (0.152) (0.716) (0.101)

Constant 0.753 1.337∗∗ 5.142∗∗ −0.703 −1.004 6.344 −0.287
(0.461) (0.582) (2.414) (1.968) (1.956) (6.895) (1.364)

Observations 842 709 98 275 138 39 82
R2 0.288 0.226 0.540 0.219 0.123 0.717 0.441
Adj. R2 0.279 0.219 0.419 0.192 0.105 0.221 0.285
F Statistic 13.192∗∗∗ 9.566∗∗∗ 4.254∗∗∗ 2.115∗∗∗ 0.871 1.169 1.494

(df = 25;
816)

(df = 21;
687)

(df = 21;
76)

(df = 32;
242)

(df = 19;
118)

(df = 26;
12)

(df = 28;
53)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 25: Explanatory power of investment start years in explaining realised DSCRs in PLS regression model. Both contracted and merchant
regressions control for sectors, but their coefficients are omitted from this table to save space.

Dependent variable: log(DSCR)
Contracted Merchant

Leverage −2.377∗∗∗ −1.416∗∗∗
(0.200) (0.382)

log of Total Assets 0.141∗∗∗ 0.253∗∗∗
(0.023) (0.094)

1986 – 0.701
– (0.846)

1993 – 2.896∗∗∗
– (0.724)

1995 – 0.296
– (0.756)

1996 1.357∗∗∗ −0.770
(0.189) (0.636)

1997 0.804∗∗∗ 0.122
(0.184) (0.585)

1998 0.115 −0.837
(0.176) (0.612)

1999 0.300∗ −0.252
(0.173) (0.670)

2000 0.271 5.297∗∗∗
(0.188) (0.752)

2001 0.038 −0.603
(0.159) (0.653)

2002 −0.061 −1.401∗∗
(0.159) (0.666)

2003 0.053 −0.809
(0.154) (0.687)

2004 0.029 −1.032∗
(0.155) (0.620)

2005 0.258 −1.337∗∗
(0.158) (0.652)

2006 0.248 −1.326∗∗
(0.158) (0.626)

2007 0.077 −1.291∗
(0.167) (0.700)

2008 0.081 −1.743∗∗
(0.201) (0.800)

2009 0.047 −1.257∗
(0.277) (0.660)

2010 0.379 −1.325∗
(0.358) (0.676)

2011 0.005 −1.587∗
(0.426) (0.835)

2012 – −1.360
– (1.104)

Observations 890 350
T 1-15 1-15
n 135 67
R2 0.226 0.499
Adj. R2 0.219 0.458
F Statistic 9.346∗∗∗ (df = 27; 865) 11.109∗∗∗ (df = 30; 334)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 26: Fixed year effects in panel regression model controlling for investment start year and sector (previous table).

Dependent variable: log(DSCR)
Contracted Merchant

Year 1 0.970∗∗∗ 2.264∗∗∗
(0.211) (0.684)

Year 2 0.829∗∗∗ 1.988∗∗∗
(0.210) (0.682)

Year 3 0.736∗∗∗ 2.050∗∗∗
(0.210) (0.690)

Year 4 0.803∗∗∗ 1.915∗∗∗
(0.210) (0.691)

Year 5 0.766∗∗∗ 1.921∗∗∗
(0.210) (0.687)

Year 6 0.808∗∗∗ 1.709∗∗
(0.211) (0.709)

Year 7 0.799∗∗∗ 2.012∗∗∗
(0.213) (0.729)

Year 8 0.797∗∗∗ 1.720∗∗
(0.215) (0.733)

Year 9 0.817∗∗∗ 1.677∗∗
(0.222) (0.728)

Year 10 0.816∗∗∗ 1.691∗∗
(0.229) (0.774)

Year 11 0.844∗∗∗ 1.059
(0.251) (0.807)

Year 12 0.822∗∗∗ 1.305
(0.251) (0.896)

Year 13 0.933∗∗∗ 1.494∗
(0.265) (0.827)

Year 14 1.078∗∗∗ 2.473∗∗∗
(0.279) (0.866)

Year 15 0.733∗∗ 2.443∗∗∗
(0.300) (0.866)

Observations 890 350
T 1-15 1-15
n 135 67
R2 0.241 0.526
Adj. R2 0.230 0.445
F Statistic 6.275∗∗∗ (df = 43; 849) 6.097∗∗∗ (df = 56; 308)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 27: Panel regression of DSCRs controlling for financial ratios and project time (next table)

Dependent variable: log(DSCR)
Contracted Merchant

Profit Margin 0.886∗∗∗ −0.513∗
(0.295) (0.283)

Asset Turnover 0.851∗∗∗ 0.360
(0.261) (0.277)

Cash Return on Assets 0.055 0.184
(0.413) (0.794)

Capex/Revenue Ratio 0.0001 0.00000
(0.0002) (0.00000)

Capex Coverage −0.00004 −0.00000
(0.0002) (0.00000)

Commercial and Industrial 0.540 –
(0.376) –

Energy 0.072 1.201∗∗∗
(0.370) (0.259)

Government Services 0.933∗∗∗ –
(0.117) –

Telecom 0.797 –
(0.666) –

Oil and Gas – 3.178∗∗∗
– (0.368)

Transport 0.987∗∗∗ 1.414∗∗∗
(0.183) (0.266)

Observations 239 198
T 1-15 1-15
n 79 63
R2 0.101 0.187
Adj. R2 0.097 0.179
F Statistic 2.579∗∗∗ (df = 10; 229) 5.451∗∗∗ (df = 8; 190)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 28: Fixed year effects in panel regression model controlling for financial ratio and sector (previous table)

Dependent variable: log(DSCR)
Contracted Merchant

Year 1 0.570 1.539∗∗∗
(0.403) (0.417)

Year 2 0.634 1.221∗∗∗
(0.408) (0.405)

Year 3 0.388 1.249∗∗
(0.410) (0.505)

Year 4 0.650 1.022∗∗
(0.430) (0.516)

Year 5 0.658 0.701
(0.453) (0.535)

Year 6 0.620 0.715
(0.467) (0.589)

Year 7 0.507 1.328∗∗
(0.480) (0.609)

Year 8 0.478 1.028
(0.522) (0.680)

Year 9 0.685 0.778
(0.514) (0.717)

Year 10 1.051∗ 1.376∗
(0.589) (0.808)

Year 11 0.966∗ −0.069
(0.579) (0.923)

Year 12 1.074∗ 0.233
(0.587) (1.110)

Year 13 1.245∗∗ 0.525
(0.586) (0.776)

Year 14 1.185∗∗ 1.444
(0.587) (1.008)

Year 15 0.598 1.302
(0.631) (1.080)

Observations 239 198
R2 0.175 0.309
Adj. R2 0.156 0.262
F Statistic 1.741∗∗ (df = 26; 213) 2.506∗∗∗ (df = 30; 168)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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About Natixis

Natixis is the international corporate,

investment, insurance and financial services

arm of Groupe BPCE, the 2nd-largest

banking group in France with 36 million

clients spread over two retail banking

networks, Banque Populaire and Caisse

d’Epargne.

With more than 16,000 employees, Natixis

has a number of areas of expertise that

are organised into three main business

lines: Corporate & Investment Banking,

Investment Solutions & Insurance, and

Specialised Financial Services.

A global player, Natixis has its own client

base of companies, financial institutions and

institutional investors as well as the client

base of individuals, professionals and small

and medium-size businesses of Groupe

BPCE’s banking networks.

Listed on the Paris stock exchange, it has

a solid financial base with a CET1 capital

under Basel 3(1) of Eur12.6 billion, a Basel 3

CET1 Ratio 11 of 11% and quality long-term
11 - Based on CRR-CRD4 rules
published on June 26, 2013, including
the Danish compromise - no
phase-in except for DTAs on loss
carry-forwards. Figures as at June 30,
2015

ratings (Standard & Poor’s: A / Moody’s: A2

/ Fitch Ratings: A).

Natixis is a recognised player in the infras-

tructure space and has notably obtained the

following rankings in 2014:

l #1 Arranger in France for PPP, Conces-

sions or DSP by Le Magazine des Affaires

l #10 Global MLA for Project Finance by

Thomson Reuters

l #10 Global Bookrunner for Project

Finance by Thomson Reuters

l #9 Americas Advisory mandates won for

Project Finance by Thomson Reuters

More information on Natixis infras-

tructure expertise available at:

http://cib.natixis.com/infrastructure.
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A Profound Knowledge Gap
EDHECinfra addresses the
profound knowledge gap

faced by infrastructure
investors by collecting

and standardising private
investment and cash flow

data and running
state-of-the-art asset

pricing and risk models to
create the performance

benchmarks that are
needed for asset

allocation, prudential
regulation and the design

of new infrastructure
investment solutions.

Institutional investors have set their sights
on private investment in infrastructure
equity and debt as a potential avenue
towards better diversification, improved
liability-hedging and reduced drawdown
risk.

Capturing these benefits, however, requires
answering a number of difficult questions:

1. Risk-adjusted performance measures
are needed to inform strategic asset
allocation decisions and monitoring
performance;

2. Duration and inflation hedging
properties are required to understand
the liability-friendliness of
infrastructure assets;

3. Extreme risk measures are in demand
from prudential regulators amongst
others.

Today none of these metrics is documented
in a robust manner, if at all, for investors
in privately-held infrastructure equity or
debt. This has left investors frustrated by
an apparent lack of adequate investment
solutions in infrastructure. At the same
time, policy-makers have begun calling for
a widespread effort to channel long-term
savings into capital projects that could
support long-term growth.

To fill this knowledge gap, EDHEC has
launched a new research platform,
EDHECinfra, to collect, standardise and
produce investment performance data for
infrastructure equity and debt investors.

Mission Statement
Our objective is the creation a global repos-
itory of financial knowledge and investment
benchmarks about infrastructure equity and
debt investment, with a focus on deliv-

ering useful applied research in finance for
investors in infrastructure.

We aim to deliver the best available
estimates of financial performance and
risks of reference portfolios of privately-
held infrastructure investments, and to
provide investors with important insights
about their strategic asset allocation
choices to infrastructure, as well as support
the adequate calibration of the relevant
prudential frameworks.

We are developing unparalleled access to
the financial data of infrastructure projects
and firms, especially private data that is
either unavailable to market participants
or cumbersome and difficult to collect and
aggregate.

We also bring advanced asset pricing
and risk measurement technology designed
to answer investors’ information needs
about long-term investment in privately-
held infrastructure, from asset allocation
to prudential regulation and performance
attribution and monitoring.

What We Do
The EDHECinfra team is focused on three key
tasks:

1. Data collection and analysis: we
collect, clean and analyse the private
infrastructure investment data of the
project’s data contributors as well as
from other sources, and input it into
EDHECinfra’s unique database of infras-
tructure equity and debt investments
and cash flows. We also develop data
collection and reporting standards that
can be used to make data collection
more efficient and reporting more
transparent.

92 A Publication of the EDHEC Infrastructure Institute-Singapore



Cash Flow Dynamics of Private Infrastructure Project Debt - March 2016

About the EDHEC Infrastructure
Institute-Singapore

This database already covers 15 years of
data and hundreds of investments and,
as such, is already the largest dedicated
database of infrastructure investment
information available.

2. Cash flow and discount rate models:
Using this extensive and growing
database, we implement and continue
to develop the technology developed
at EDHEC-Risk Institute to model the
cash flow and discount rate dynamics of
private infrastructure equity and debt
investments and derive a series of risk
and performance measures that can
actually help answer the questions that
matter for investors.

3. Building reference portfolios of
infrastructure investments: Using
the performance results from our
asset pricing and risk models, we can
report the portfolio-level performance
of groups of infrastructure equity or
debt investments using categorisations
(e.g. greenfield vs brownfield) that are
most relevant for investors’ investment
decisions.

Partners of EDHECinfra

Monetary Authority of Singapore
In October 2015, the Deputy Prime Minister
of Singapore, Tharman Shanmugaratnam,
announced officially at the World Bank
Infrastructure Summit that EDHEC would
work in Singapore to create “usable bench-
marks for infrastructure investors.”

The Monetary Authority of Singapore
is supporting the work of the EDHEC
Singapore Infrastructure Investment
Institute (EDHEC infra) with a five-year

research development grant.

Sponsored Research Chairs
Since 2012, private sector sponsors have
been supporting research on infrastructure
investment at EDHEC with several research
Chairs that are now under the EDHEC Infras-
tructure Investment Institute:

1. The EDHEC/NATIXIS Research Chair on
the Investment and Governance Charac-
teristics of Infrastructure Debt Instru-
ments, 2012-2015

2. The EDHEC/Meridiam/Campbell Lutyens
Research Chair on Infrastructure Equity
Investment Management and Bench-
marking, 2013-2016

3. The EDHEC/NATIXIS Research Chair
on Infrastructure Debt Benchmarking,
2015-2018

4. The EDHEC/Long-Term Infrastructure
Investor Association Research Chair on
Infrastructure Equity Benchmarking,
2016-2019

5. The EDHEC/Global Infrastructure Hub
Survey of Infrastructure Investors’
Perceptions and Expectations, 2016

Partner Organisations
As well as our Research Chair Sponsors,
numerous organisation have already recog-
nised the value of this project and have
joined or are committed to join the data
collection effort. They include:

l The European Investment Bank;
l The World Bank Group;
l The European Bank for Reconstruction

and Development;
l The members of the Long-Term Infras-

tructure Investor Association;
l Over 20 other North American, European

and Australasian investors and infras-
tructure managers.
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EDHECinfra is also :

l A member of the Advisory Council of
the World Bank’s Global Infrastructure
Facility

l An honorary member of the Long-term
Infrastructure Investor Association

Origins and Recent Achievements
In 2012, EDHEC-Risk Institute created
a thematic research program on infras-
tructure investment and established two
Research Chairs dedicated to long-term
investment in infrastructure equity and
debt, respectively, with the active support
of the private sector.

Since then, infrastructure investment
research at EDHEC has led to more than
20 academic publications and as many
trade press articles, a book on infrastructure
asset valuation, more than 30 industry and
academic presentations, more than 200
mentions in the press and the creation
of an executive course on infrastructure
investment and benchmarking.

Testament to the quality of its contributions
to this debate, EDHEC infra’s research team
has been regularly invited to contribute to
high-level fora on the subject, including G20
meetings.

Likewise, active contributions were made to
the regulatory debate, in particular directly
supporting the adaptation of the Solvency-
2 framework to long-term investments in
infrastructure.

This work has contributed to growing the
limited stock of investment knowledge in
the infrastructure space.

Significant empirical findings already
include:

l The first empirical estimates of
construction risk for equity and debt
investors in infrastructure project
finance;

l The only empirical tests of the statis-
tical determinants of credit spreads in
infrastructure debt since 2008, allowing
controlling for the impact of market
liquidity and isolating underlying risk
factors;

l The first empirical evidence of the
diversification benefits of investing in
greenfield and brownfield assets, driven
by the dynamic risk and correlation
profile of infrastructure investments over
their lifecycle;

l The first empirical documentation of the
relationship between debt service cover
ratios, distance to default and expected
default frequencies;

l The first measures of the impact of
embedded options in senior infras-
tructure debt on expected recovery,
extreme risk and duration measures;

l The first empirically documented study
of cash flow volatility and correlations
in underlying infrastructure investment
using a large sample of collected data
covering the past fifteen years.

Key methodological advances include:

l A series of Bayesian approaches to
modelling cash flows in long-term
investment projects including predicting
the trajectory of key cash flow ratios in a
mean/variance plane;

l The first fully-fledged structural credit
risk model of infrastructure project
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finance debt;

l A robust framework to extract the term
structure of expected returns (discount
rates) in private infrastructure invest-
ments using conditional volatility and
initial investment values to filter implied
required returns and their range at
one point in time across heterogenous
investors.

Recent contributions to the regulatory
debate include:

l A parsimonious data collection template
to develop a global database of infras-
tructure project cash flows;

l Empirical contributions to adapt
prudential regulation for long-term
investors.
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EDHEC Publications

l Blanc-Brude, F., T. Whittaker and M. Hasan. Cash Flow Dynamics of Private Infras-
tructure Debt (March 2016).
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l Blanc-Brude, F. Towards efficient benchmarks for infrastructure equity invest-
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l Blanc-Brude, F. Pension fund investment in social infrastructure (February 2012).

Books

l Blanc-Brude, F. and M. Hasan, Valuation and Financial Performance of Privately-
Held Infrastructure Investments. London: PEI Media, Mar. 2015.

Peer-Reviewed Publications

l F. Blanc-Brude, S. Wilde, and T. Witthaker, “Looking for an infrastructure asset class
Definition and mean-variance spanning of listed infrastructure equity proxies”,
2016 (forthcoming)

l Blanc-Brude, F., M. Hasan, and T. Witthaker, ”Benchmarking Infrastructure Project
Finance - Objectives, Roadmap and Recent Progress”, Journal of Alternative
Investments, 2016 (forthcoming)

l R. Bianchi, M. Drew, E. Roca and T. Whittaker, ”Risk factors in Australian bond
returns”, Accounting & Finance, 2015
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l Blanc-Brude, F. “Long-term investment in infrastructure and the demand for
benchmarks,” JASSA The Finsia Journal of Applied Finance, vol. 3, pp. 57–65, 2014.
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